
Terazona

Version 1.4.1

Developer Guide

(Publication Date: 2004-07-02)

All non-Shanda Zona trademarks are the property of their respective owners.

© Copyright 2000-2004, Shanda Zona, LLC. ALL RIGHTS RESERVED.

This product includes software developed by James Cooper (http://www.bitmechanic.com/).

This product includes software developed by the Apache Software Foundation (http://www.apache.org/
).

No right to reproduce, distribute, perform, display or modify this manual is granted hereby. If additional copies

are required, please contact contact@zona.net.

The information presented herein is provided to the reader “as is,” without warranty of any kind. Shanda Zona
LLC. hereby disclaims all other warranties, whether expressed, implied, statutory or otherwise. including
without limitation, the implied warranty of non-infringement of third party rights, merchantability and fitness
for a particular purpose.

3350 Scott Blvd.,
Santa Clara, CA 95054

http://www.zona.net/

mailto:contact@zona.net
http://www.bitmechanic.com/
http://www.apache.org/
http://www.bitmechanic.com/
http://www.apache.org/
http://www.zona.net/

TERAZONA DEVELOPER GUIDE iii
Contents

List Of Figures xi

Audience . xiv

Document Conventions . xiv
Special Message Conventions .xv
Menu Conventions .xv
Mouse Conventions .xv

Additional Help. xvi

Part I • Overview

Chapter 1 Terazona Architecture • 3

Terazona Game Platform Functions. 4

Terazona Components. 4
Game State Servers . 5
Game Guild Servers. 5
Sphere Server . 5
ZAC Server . 6
 Dispatcher Server . 6
Authentication Server . 6
NPC Server . 6
Auditing Server . 7
Message Server . 7
Zona Administrator Application . 7
Zona Modeler . 7
The C++ Client API . 7
Game Server Plugin API - GSAPI. 7

Chapter 2 MMOG Game Design and Data Flow • 9

MMOG Concepts . 10

MMOG Network Architecture . 10

Chapter 3 Player Management • 13

Player Interaction Within Terazona . 14

Chapter 4 Character Management • 15

Character Interaction Within Terazona. 16

Chapter 5 Game State Validation • 17

Understanding Game State Validation . 18

Chapter 6 Entity and NPC Management • 19

The NPC Server . 20

iv CONTENTS
Chapter 7 Environment Management • 21

Managing the Environment WIthin Terazona 22

Chapter 8 Chat Services • 23

Chatting Within Terazona . 24
Understanding MMOGs & Chat . 24

Describing Chat. 25
Explaining Sphere Chat. 25
Explaining Game Guild Chat . 25
Extended Guild Features . 27
Using Game Guilds. 27
Implementing Game Guilds . 28

Filtering Chat Content . 28

Chapter 9 Zona Modeler • 29

Why Zona Modeler? . 30

Understanding Zona Modeler . 30

Summarizing Zona Modeler . 31

Part II • API Analyses

Chapter 10 Client API Introduction • 35

Analyzing the Client API . 36

Understanding ZonaServices . 37
Understanding ZonaClientCharacter. 37

Understanding ChatCallBack. 37

Understanding GameGuildCallback. 37

Understanding EntityCallBack. 38

Understanding GameStateCallback . 38

Chapter 11 GSAPI Introduction • 39

Understanding Game State Validation . 40

Implementing the GSAPI . 41

Understanding Game State Message Flow 42

Chapter 12 Regions And Maps API • 43

Analyzing Regions. 44

Locating Regions . 45

Analyzing Maps. 46
Load-Balancing with Maps . 46

Managing Movement . 46
Understanding the Sphere of Interest 47

Managing Region Ownership . 49

TERAZONA DEVELOPER GUIDE v
Summarizing Regions . 49

Understanding the Master/Ghost Entity Relationship 50
Updating Ghost Entity Objects . 50

Entering a Sphere and Exiting a Sphere . 51

Managing Maps . 51
Initializing Maps . 52
Managing Maps. 52
Checking Neighbors . 52
Monitoring Maps and Regions . 53

Publishing Data Using Functions . 54

Receiving Data Using Functions . 54

Chapter 13 Physics and AI API • 57

Detecting Collisions and Simulating Physics 58

Using Artificial Intelligence . 58

Managing Items. 58

Chapter 14 NPC Controller API • 59

Managing Items. 60

Understanding the NPC Controller . 60

Creating the NPC Controller . 60

Managing Child Entities . 61

Tuning NPC Server Performance. 61

Managing NPC Servers . 62

Chapter 15 Timers API • 63

Understanding Timer Events . 64
Using Entity Timers. 65

Using Region Timers . 66
Using GSS Timers . 67
Using World Timers. 67

Chapter 16 Chat Client API • 69

 Analyzing Chat Message Structure. 70
ChatMsg . 70
ChatMsgPtrVector . 72
ZonaGuildChatMsg . 72

Sending Chat . 73
Sending Guild Chat . 74

Receiving Chat . 75
Stopping Sphere Chat Monitoring . 76

Managing Guild Objects . 77
Using the Guild Object . 77

Managing Guilds . 78
Obtaining a Character’s Guild Memberships. 79

vi CONTENTS
Creating a Guild . 79
Deleting a Guild . 80

Managing Guild Activity . 80
Ignoring Guild Activity. 80

Managing Guild Membership . 81
Sending Guild Invitations . 81
Receiving Guild Invitations . 81
Joining Guilds . 81
Leaving Guilds . 81
Receiving Guild Membership Updates 81
Receiving Guild Moderator Data. 81

Moderating Guilds. 82

Receiving Guild Message Data . 82

Demonstrating Guilds . 83

Managing Persistent Messages . 84
Fetching Persistent Messages . 84
Deleting Persistent Messages . 84

Filtering Chat. 84
Understanding Chat Filtering . 85
Writing Chat Filter Directives . 86
Enabling Client-Side Filtering . 87
Disabling Client-Side Filtering . 87
Programming Client-Side Filtering . 87

Demonstrating Chat . 87

Chapter 17 Server Chat API • 89

Understanding Chat Validation . 90

Understanding Chat Message Flow . 91

Implementing the CHATAPI Plugin. 92
Compiling the CHATAPI Plugin. 93

Managing Chat Validation . 93
Analyzing the Chat Validation Functions. 93

Understanding the Game Guild State Process 95
Validating Guild Creation. 96

Filtering Server-Side Chat . 96

Auditing Chat . 97

Chapter 18 Failover & Fault Tolerance • 99

Making Fault Tolerance and Failover Transparent. 100

Chapter 19 Cheat Prevention • 101

Configuring the Cheat Prevention Interface 102

Chapter 20 Game State Records • 103

Analyzing Game State Records. 104

TERAZONA DEVELOPER GUIDE vii
Part III • Developing With Terazona

Chapter 21 Development Environment • 109

Compiling the GSAPI Plugin and CAPI Executable 110

Debugging the GSAPI Plugin . 112
Using DebugBreak(). 112

Setting up VC++ . 113

Testing the Client. 115
Configuring the XML File. 115

Changing the Development Options . 116

Starting the Client . 116

Chapter 22 Introducing Zona Modeler • 117

Introducing Zona Modeler . 118
Zona Modeler’s Components . 118
Understanding the Zona Modeler Architecture 119
Examining Zona Models . 120

Using Zona Modeler . 121
Starting Zona Modeler UI . 122

Understanding Zona Modeler Input and Output 122
Examining the Zona Modeler Inputs 122
Examining the Zona Modeler Outputs. 123

Deploying Zona Modeler Objects . 125
Deploying the Server-Side Zona Modeler Output 125
Compiling the Client-Side Zona Modeler Output. 126
Using the Zona Modeler Class IDs . 126

Chapter 23 Introducing the Zona Modeler UI • 127

Introducing the Zona Modeler UI . 128

Using the Zona Modeler UI . 128
Using the ZM UI Console . 130

Using the Model File . 130
Saving Your Model File . 130
Configuring Your Model File . 131
Renaming or Copying Your Model File 139

Creating Model Entities . 140
Adding a Character Entity . 140
Adding a Child Entity . 141
Adding a Guild Entity . 142

Designing Model Entities. 142
Examining the Entity Attributes. 144
Examining the Entity Property Attributes 145
Displaying Entity Property Attributes. 146
Examining the Entity Property Elements. 147
Displaying Entity Property Elements 149
Adding Entity Property Elements . 150

viii CONTENTS
Examining Entity Property Element Attributes 152
Modifying Entity Property Element Attributes 153

Compiling Model Entities . 155
Running Zona Modeler . 155

Chapter 24 Character Entity Object • 159

Examining the Character Entity Object . 160
Understanding the Character Entity Properties 160

Managing the Character Properties . 164
Managing the Public Properties . 164
Managing the Private Properties . 165
Managing the System Properties . 165

Updating the Character Properties . 167

Chapter 25 Simple Client Creation • 169

Creating a Simple Terazona C++ Client . 170
Tracker Client . 170
Reviewing the code . 170

Instantiating ZonaServices . 171

Logging In . 171
Understanding the GSS Event Sequence During Login 171

Managing the Character . 172
Getting the Characters . 172
Selecting the Character . 172
Entering the Character . 173

Managing the Game State . 174
Creating a GameState Callback . 174
Monitoring a GameState Callback . 175
Subscribing to GameState Updates . 176
Communicating with the Server. 177

Leaving a Game . 178
Exiting the Game World . 178
Logging Off. 178

Chapter 26 Managing Players Using The Server • 179

Managing Server-Side Characters. 180

Entering the Game . 180
Authenticating the Player . 182
Placing the Character . 182

Exiting the Game (Logout) . 184

Chapter 27 Managing Characters Using The Server • 185

Creating a Character . 186

Selecting a Character . 187

Modifying a Character. 188

Storing a Character . 188

TERAZONA DEVELOPER GUIDE ix
Deleting a Character . 189

Chapter 28 Simple Client-Server Demo Creation • 191

Using TileTest . 192
TileTest Components . 192

Reviewing the Code . 193

Programming the Client . 193
Creating a Character . 193
Modifying the Character . 195
Listening for Server Updates. 197
Managing the Client-Side Entities . 199

Programming the Server . 201
Managing the Server-side Entities. 201
Validating the Client Request . 203

Managing the Regions. 204

Glossary • 207

x CONTENTS

TERAZONA DEVELOPER GUIDE xi
List Of Figures

Figure 1-1. Logical Network Diagram . 4
Figure 1-2. Terazona Schematic Network Diagram 8
Figure 2-1. MMOG Logical Components . 10
Figure 11-1. Terazona Network Message Flow 42
Figure 12-1. Regions and Neighbors . 45
Figure 14-1. NPC Server Process Schematic. 61
Figure 17-1. Terazona Network Message Flow 91
Figure 17-2. Game Guild State Process. 95
Figure 22-1. Terazona Application Architecture 119
Figure 22-2. Zona Modeler Inputs & Outputs 124
Figure 23-1. Zona Modeler - Initial Load Screen 129
Figure 23-2. Zona Modeler - Save Model Selected 131
Figure 23-3. Zona Modeler - Changing Model Name. 133
Figure 23-4. Zona Modeler - Configuration Selected 134
Figure 23-5. Zona Modeler - Configuration Display 134
Figure 23-6. Zona Modeler - Change Current Configuration File . 135
Figure 23-7. Zona Modeler - Choose Configuration File 135
Figure 23-8. Zona Modeler - Save Configuration File Choice. . . . 136
Figure 23-9. Zona Modeler - Change Project Root Directory 137
Figure 23-10. Zona Modeler - Selecting the Project Root Directory 137
Figure 23-11. Zona Modeler - Project Root Directory Selected . . 138
Figure 23-12. Zona Modeler - Save As... Selected. 139
Figure 23-13. Zona Modeler - Add Entity 141
Figure 23-14. Zona Modeler - Default Entity Attributes 143
Figure 23-15. Zona Modeler - Public Property Attributes Displayed 146
Figure 23-16. Zona Modeler - Entity System Property Element Attributes
149
Figure 23-17. Zona Modeler - Selecting an Entity Property 150
Figure 23-18. Zona Modeler - Adding an Entity Property Element 151
Figure 23-19. Zona Modeler - Entity Property Element Added . . 151
Figure 23-20. Zona Modeler - Displaying an Entity’s Property Element At-
tributes. 153
Figure 23-21. Zona Modeler - Modifying an Entity’s Property Element At-
tributes. 154
Figure 23-22. Zona Modeler - Displaying a Modified Entity’s Property El-
ement Attributes . 154
Figure 23-23. Zona Modeler - Menu Item “Run” Selected 155
Figure 23-24. Zona Modeler - Confirm Configuration Dialog 156
Figure 23-25. Zona Modeler - Successful Build Completed. 157
Figure 24-1. Character Entity Object - GSS’s Version 162
Figure 24-2. Character Entity Object - Owning Client Local Version 162
Figure 24-3. Character Entity Object - Other Clients’ Local Version 163

xii

xiii

Introduction
Welcome to the Terazona Developer Guide. Terazona provides
a reliable and scalable message-passing network infrastructure
and a distributed object-view technology for creating persistent,
massive multiplayer online game worlds (MMOGs) and
simulation environments. The infrastructure consists of a
cluster of inter-communicating server that provide validation of
incoming client messages and region-based redistribution of
validated messages back to clients. Terazona also provides
additional game-related services, such as chat- and guild-based
message redistribution. Game developers program Terazona
using C/C++ client-side and server-side APIs.

xiv
Audience

This guide is intended for people who will use Terazona to create massive multiplayer
online games (MMOGs).:

Document Conventions

This guide uses a variety of formats to identify different types of information.

Convention Function

courier Identifies syntax statements, on-screen computer text, and path, file, drive,
directory, database, and table names.

<courie
r>

Identifies variable names.

bold
courier

Identifies text you must type.

italics Identifies document and chapter titles, special words or phrases used for the first
time, and words of emphasis.

underline Identifies URLs, domain names, and email addresses.

Initial Caps Identifies Window, menu, command, button, option, tab, keyboard, and product-
specific names.

ALL CAPS Identifies acronyms and abbreviations.

[] Identifies an optional item in syntax statements.

{ } Identifies an optional item that can be repeated as necessary within a syntax
statement.

> Identifies a separation between a menu and an option.

| Identifies a separation between items in a list of unique keywords when you may
only specify one keyword.

TERAZONA DEVELOPER GUIDE xv

Document Conventions
Special Message Conventions

Menu Conventions

This guide uses the Menu > Option convention. For example, “Click Format > Style” is
a shorthand instruction for “Click the Format menu, then select the Style option.”

Mouse Conventions

To select something, place the on-screen pointer or cursor on the item and click the left
mouse button.

To view an Options menu, place the on-screen pointer or cursor on an item and click the
right mouse button (or left mouse button if using a left-handed mouse). If a menu is
available, it will open. (Clicking the right mouse or left mouse button is referred to in this
guide as option-click.)

When the term click the mouse on...is used without qualification, it means to place the on-
screen pointer or cursor on an item and click the left mouse button.

To drag something, click the mouse on it and drag the pointer to a different location
before releasing the mouse button.

When selecting items from a list using the mouse, you can sometimes select more than
one item by holding down the Shift or Control key while clicking the mouse.

To select a contiguous block of items, click on one item, hold the Shift key down, and
click on a second item. All items between the two will be selected when multiple selection
is enabled.

To select items from different locations when multiple selection is enabled, hold the
Control key down. Each selected item will remain selected until you complete the action
or click the mouse without holding the Control key down.

Identifies information that will help prevent system failure or loss of data.

Identifies information of importance or special interest, including Notes and Tips.

xvi
Additional Help

For additional information or advice, contact:

Contact Information United States

Phone + (408) 844 9646

Facsimile + (408) 844 9647

Internet http://www.zona.net/

Email Strategic Partners: strategicpartners@zona.net
Developers: gamedevelopers@zona.net
Recruitment: jobs@zona.net
Information: contact@zona.net

Postal Shanda Zona, LLC.,
3350 Scott Blvd. #23,
Santa Clara, CA 95054-3104

mailto:strategicpartners@zona.net
mailto:gamedevelopers@zona.net
mailto:jobs@zona.net
mailto:contact@zona.net
http://www.zona.net/

�

�

�

�

�

�

�

�

�

Part

 I
Chapter 1 • 3
Terazona Architecture

Chapter 2 • 9
MMOG Game Design and
Data Flow

Chapter 3 • 13
Player Management

Chapter 4 • 15
Character Management

Chapter 5 • 17
Game State Validation

Chapter 6 • 19
Entity and NPC Management

Chapter 7 • 21
Environment Management

Chapter 8 • 23
Chat Services
Overview

This part of the Terazona Developer Guide introduces you to
some of the concepts behind Massively Multiplayer Online
Games (MMOGs) and Terazona.
1

Chapter 9 • 29
Zona Modeler

2

�

�

Chapter

 1
Terazona Game Platform Functions
• 4

Terazona Components • 4
Terazona Architecture

The primary function of Terazona is to provide a lightweight
and very scalable network messaging system to support massive
multiplayer online games (MMOGs).
3

4 CHAPTER 1
Terazona Game Platform Functions

Terazona provides the following game server platform functions:

• A flexible, developer-definable approach to grouping players and objects together. This
intelligently determines which game objects receive specific updates. This optimizes
the system’s use of available bandwidth and processor cycles.

• An API that abstracts away the underlying communication complexities, presenting to
developers a simple yet powerful platform model uniquely suited to the development
of MMOGs.

• A game-relevant naming system for game development projects that standardizes
development effort and promotes cross-functional cooperation within organizations.

• Common and required game functions, such as chat and user profile persistence.

• Reliability through automatic game server fail-over, when deployed in “cluster” mode.
Fail-over is invisible to game clients and client dropout does not occur.

• An administrative console that presents a coherent, unified command, control, and
monitoring interface for game system administrators.

Terazona Components

Figure 1-1 illustrates the logical multi-tier layout for the Terazona game communications.
As developers, you should be concerned mainly with the Game State Servers (GSSs) and
the Game Guild Server (GGS) for development purposes. Configuration and cluster
management are described in the Terazona Install Guide.

Figure 1-1. Logical Network Diagram

PC

MAC

PlayStation 2

GameCube

XBox

IBM

IBM

Game Database

Auditing Database

Game Server 1..n

Dispatcher Sphere Server

IBM

Billing Database

NPC Server 1..n

Game Guild
Server

Billing ServerWeb/Patch Server

Auth Server

Auditing Server

TERAZONA DEVELOPER GUIDE 5

Terazona Components
Game State Servers

Game State Servers (GSSs) manage Entity State Validaation within game Spheres and
game Regions. GSSs manage Entities according to a spatial- or location-based paradigm.
Spheres are message group abstractions definable in the server GSAPI API. Sphere
grouping is used by the system to intelligently filter out messages to be sent to any player.
A game Region is generally defined as the smallest area that a Game State Server will
handle within the game. Spheres generally cover multiple Regions within the game. This
mechanism makes efficient use of available bandwidth by reducing the number of
message packets to be broadcast.

Game State Servers (GSSs) are connection managers for hundreds or thousands of clients.
Game-specific logic can be incorporated in the server as a server GSAPI, written in C/
C++. Each Game State Server communicates with the ZAC server, periodically sending it
game server statistics, such as number of currently logged on players, average message
throughput, and so forth.

When deployed in cluster mode, the multiple Game State Servers (GSSs) work in tandem
with a Sphere Server. The Sphere Server is responsible for distributing the workload
among the Game State Servers.

The Game State Servers also provide other utility services, such as user profile persistence.
The server interfaces to supported SQL databases via JDBC, enabling game objects to
save their state and persist over time.

Game Guild Servers

Game Guild Servers (GGSs) manage Entity State Updates within Game Guilds. Game
Guilds are sets of Entities that share common characteristics and can be used to map in-
game design features such as common religions, families, kinship relationships, factions,
and clans. GGSs manage Entity State Updates according to a set- or membership-based
paradigm. GGSs communicate with each other and with GSSs to keep Entity states
synchronized across the Terazona cluster.

The GGS provides various chat functionality, including public chat, private chat, and
group chat, and also ensures persistent chat messages. The GGS also provides content
filtering and a Chat API (CHATAPI) to perform chat activity validation and
management.

Sphere Server

The Sphere Server coordinates and manages Regions across Game State Servers. One
Sphere Server will coordinate Region ownership between several Game State Servers.
Coordination of spheres across GSSs enables mobile spheres with updates spanning

6 CHAPTER 1
multiple GSSs. This server enables seamless maps and connected worlds. Sphere Servers
are critical to cluster-mode deployment.

ZAC Server

The Zona Administration Controller (ZAC) functions as a centralized process
management service in Terazona. All the various processes within Terazona inform the
ZAC of their activities. All the Terazona processes establish a link with the ZAC during
startup, that is, the ZAC is responsible for validating a process’ existence. The ZAC’s
functionality includes process statistics management, process startup/shutdown
validation, and checking for dead processes. Additionally, the ZAC functions as a GUI
Client of the ZAC server.

The various processes within Terazona can be activated in any order. All of the server
processes -- that is, GSS, Sphere Server, Dispatcher, and Admin tool -- wait for ZAC to
be started.

 Dispatcher Server

The Dispatcher server is the first point of contact for Terazona game clients. The
Dispatcher directs game clients to start a session with a particular Game State Server. It
uses an intelligent load-balancing algorithm to determine the least loaded Game State
Server which is available to service the requesting client. The Dispatcher periodically
receives server load statistics from the ZAC server. It also detects a Game State Server
crash and directs the affected clients to connect to another server.

Authentication Server

Players are authenticated in the login stage before character selection. This is performed
by the Authentication Server. The Authentication Server provides a security buffer
between the client and the database, as well as ensuring that the player is valid.

NPC Server

The Non-Player Character (NPC) server provides a framework for the developer to create
and control non-player characters or Artificial Intelligence Entities within the game. This
server behaves just like a client, albeit a trusted one. The NPC Controller (a special
Entity) can control entire classes of Child Entities such as vehicles, monsters, and so on.
NPC Servers provide seamless failover.

TERAZONA DEVELOPER GUIDE 7

Terazona Components
Auditing Server

The Auditing Server stores “snapshots” of game activities within an Auditing Database for
later retrieval and analysis by Game Masters or System Administrators. We recommend
deploying the Game Database and the Auditing Database on seperate database servers to
optimize performance.

Message Server

The Message server provides all of the low-end basic messaging between the various
servers on the system. They are data agnostic and process all messages between the client
and the Game State Servers, as well as being the intermediary between the GSS and the
other servers. These are completely transparent in the system, and do not require any
knowledge by the developer.

Zona Administrator Application

The Zona Administrator application receives data from the ZAC and displays the server
status, as well as allowing the developer to control which servers are running. The user
can monitor traffic on the GSS, as well as monitor for error messages.

Zona Modeler

Zona Modeler is not a system component but an XML-based object framework that
underpins Terazona. Zona Modeler Objects are the foundation for much of Terazona’s
functionality and data layer persistence. The Zona Modeler UI enables non-
programmatic development and modification of game objects, and during run-time
Zona Modeler helps Terazona’s servers to exchange bandwidth-optimized game object
state change messages and updates.

The C++ Client API

The C++ Client API (CAPI) provides game developers with an interface to write game
clients that will work within the Terazona. The API utilizes a custom, lightweight JMS-
like messaging protocol. This API is portable across PC, PS2, XBox, and GameCube.
Wireless devices will be supported in a forthcoming version.

Game Server Plugin API - GSAPI

The Game Server Plugin API (GSAPI) is the means to embed game specific logic and
validation in the Game Servers. The GSAPI constitutes a system-defined static library,

8 CHAPTER 1
written in C, in addition to a user-defined DLL. The user-defined DLL, also written in
C, uses the functions exposed by the static library to interface with the Game State
Servers.

The samples provided with this release illustrate the usage of the GSAPI library. This
dynamic design makes it very easy to switch between different game applications, as well
as upgrade to newer game logic.

When a GSS receives network messages from the Clients, it passes the messages to the
GSAPI library, where they are handled according to developer-specified programming.

Figure 1-2. Terazona Schematic Network Diagram

Client-1

Client-2 Client-3

Game
State

Server
(GSS)

Game
State
Server
(GSS)

Client-4

Zona Admin
Control
(ZAC)

Game
State

Server
(GSS)

Sphere
Server

Thursday, July 01, 2004 Terazona MMOG Typical Architecture

Dispatcher
Server

Game
Database

ZAC Msg
Broker

GSS Msg
Broker

GSS Msg
Broker

Load
Balancing

Msg
Broker

Login
Msg

Broker

firewall with Port 2000 open

Zona Game
Master
Server

Zona Game
Master

Application

Game Guild
Server
(GGS)

�

�

Chapter

 2
MMOG Concepts • 10

MMOG Network Architecture • 10
MMOG Game Design and

Data Flow

The integration of network communications into Massive
Multiplayer Online Games (MMOG) is extensive, but it does
not necessarily need to be too complex at the game level. This
chapter introduces the concepts required to easily integrate the
Terazona MMOG engine into the developer’s game.
9

10 CHAPTER 2
MMOG Concepts

The first thing that needs to be defined are the basic concepts behind the logical
components within the game. The game objects are broken down into three separate
concepts:

1 Player -- Includes all session information about the players;

2 Entity --Any network enabled object which exists within the game, including player
characters, NPC characters/monsters, and any objects within the game;

3 Character -- A special case of the Entity controlled by the Player.

MMOG Network Architecture

This diagram shows the basic logical components for the integration for network
communications in a MMORPG.

There are six main elements in this configuration:

1 Game State Validation

2 Character Management

3 Player Management

4 NPC Entity Management

5 Environment Management

6 Chat (Guild Chat and Player-to-Player Chat)

Figure 2-1. MMOG Logical Components

Network Game
Component
Interfaces

Login/Logout

Chat Service

Guild Management Sphere Chat

Player Management

Authentication

CharacterManagement

Character

Creation

Character

Deletion

Character

Selection

Character

Attributes
Character

Display Properties

Movement Management

PhysicsCombat

GameState
Updates

WeatherTimers/Events

Environment
Management

NPC Server

AI Entity Management

TERAZONA DEVELOPER GUIDE 11

MMOG Network Architecture
These are by no means the conclusive set of components, nor necessarily a fixed
configuration for developing your game. These are mainly guidelines for the simplest
integration and a demonstration of how to quickly grasp the concepts behind getting
started.

Each of these logical components has elements in both the client side and the server-side
GSAPI. We will describe the basic concepts behind each of these logical components as
well as a simple design of a character within the game.

12 CHAPTER 2

�

Chapter

 3
Player Interaction Within Terazona
• 14
Player Management

Players are the billable components of MMOGs. Players
correspond to real-world users who, entering a game, may
assume the role of any number of different Characters. This
chapter explains how Terazona handles Player login and
authentication.
13

14 CHAPTER 3
Player Interaction Within Terazona

This is the first step in development of a simple client. This covers the following concepts
in the network side of the game:

• Login into the game

• Authentication of the client

• Starting up the Terazona Services on the client side

• Connection to the Game State Server (GSS)

• Entering the player’s Character into the game

• Log out of the game and

• Disconnection from the server

Most of this part of the integration starts on the Client side of the game. Several of the
components require GSAPI code to enable such functions as user authentication,
character selection, and game entrance validation.

�

Chapter

 4
Character Interaction Within
Terazona • 16
Character Management

Characters are the entities that Players (users) manipulate to
interact within a game world. This chapter outlines a typical
Character interaction within Terazona.
15

16 CHAPTER 4
Character Interaction Within Terazona

Character Management covers all of the control and management of the player’s
characters within the game. This covers such concepts as:

• Definition of the Character Entity Properties

• Creation of the character

• Selection of the character

• Deletion of the character

• Updating the character

• Validating the character on the server side

• Saving the character to the Database

�

Chapter

 5
Understanding Game State
Validation • 18
Game State Validation

Game State Validation is a central concept within Terazona.
Validation preserves the conceptual integrity of game worlds
from system errors and malicious hacking. Systematic
validation of game messages also optimizes required bandwidth
and channels it effectively. This chapter outlines Terazona’s
approach to Game State Validation.
17

18 CHAPTER 5
Understanding Game State Validation

Game State Validation is done entirely on the server-side, within the GSAPI. This is the
core functionality of the GSAPI and it handles all of the common game logic. The
validation code processes all character and game state updates including such items as
position, orientation and damage. It publishes the processed/validated data to those
clients within the Sphere of Interest of each client.

Each client receives data from other clients based on its Sphere of Interest. This is defined
in the Game State Validation code usually as the Region that the Client currently resides
in as well as all of the closest surrounding Regions. This is a single example of one type of
Sphere of Interest (SOI). It is by no means the only manner of defining it. The developer
is free to define the algorithms for determining each user’s Sphere of Interest. These
Regions are described in further detail later in this document.

An example of the Game State Validation would be a player moving their character from
one position to another. The client sends the character position updates to the GSS
through the GSAPI. The GSS validates the data to ensure that it is an allowed move and
checks for collision detections. If the move is valid, the data is then published to any
other Clients whose Sphere of Interest contains that players’ position. If the requested
move is invalid, you can direct the GSS to publish corrected data back to the Client.

Game State Validation can also handle such concepts as:

• Player Cheats

• Collision Detection

• Physics

• Combat

• Character Updates (such as health, endurance, and ammunition).

Much of the otherwise tedious data and bounds checking and validation is handled by
Terazona’s Zona Modeler Framework (ZMO). This automates and optimizes game object
creation and modification, handling them transparently and without programmer effort. For
more details, see Zona Modeler on page 29.

�

Chapter

 6
The NPC Server • 20
Entity and NPC

Management

NPCs and Entities (objects) within a game world give it flavor
and meaning for its participants. This chapter explains how
Terazona provides a robust and scalable framework to manage
and design interactions between NPCs, Entities, and
Characters.
19

20 CHAPTER 6
The NPC Server

The Non-Player Character Server handles all the AI for NPCs as well as player to NPC
interactions. The NPC Server is treated as a trusted client. It normally resides behind the
firewall within the game state cluster. Terazona provides a framework for the NPC Server,
and does not limit the developer in any manner. The framework is designed to let the
developer easily integrate new NPCs into the game as well as control other aspects of the
AI within the game. An XML file is used by the NPC Server to allow for the easy
configuration of already defined NPCs for a particular NPC Server instance.

The NPC Server can also control child Entities that a player may own from time to time.
Examples of these types of Entities are pets or robotic devices that the player may obtain
as they make their way through the game. These Entities are controlled by a Controller -
an Entity that manages all Child Entities of a particular Type.

�

Chapter

 7
Managing the Environment WIthin
Terazona • 22
Environment Management

Game worlds profit from a rich and varied environment that
adds realism to the user experience. This chapter explains how
Terazona enables easy creation and management of localized
and system-wide weather, events, and calamities.
21

22 CHAPTER 7
Managing the Environment WIthin Terazona

The environment management is handled by a combination of the NPC Server, the GSSs
and the Timer functionality. The NPC Server contains the AI for such things as global
and Regional weather and can be generated on the NPC Server by AI code and then it
triggers a timer on one of the Game Servers which can then trigger the global timer which
updates all of the Game Servers. The Environment management would cover such things
as:

• Regional Weather

• Global Weather

• Earthquakes

�

Chapter

 8
Chatting Within Terazona • 24
Chat Services

One of the requirements of a rich and immersive game world
that entices users to return again and again is to facilitate inter-
player communication. People want to chat to each other, to
create guilds and secret societies, and to recruit like-minded
individuals for glorious quests. This chapter describes how
Terazona provides a rich, multilayered communicative
framework.
23

24 CHAPTER 8
Chatting Within Terazona

Terazona provides a complete chat framework for developing chat within the game. This
system supports all normal forms of chat such as guild chat, local chat, general game chat
and persistent chat. This system can also be adopted for audio inputs such as Microsoft’s
XBox Communicator.

This is strictly a framework and allows the developer to create their own graphical chat
interface. The user may use any or all of the feature sets for their game. For instance some
games use persistent chat messages in Guilds, so that if a Player is logged off when a
message is sent that message can be saved in the database for later retrieval by the Player.

The Game Guild Servers (GGSs) provide the network infrastructure for Terazona’s Chat
functionality.

Understanding MMOGs & Chat

MMOGs live or die by the quality and breadth of their chat offerings. A rich chat
implementation cannot save a bad game but it is a critical ingredient of every successful
MMOG. Instant chat messaging enhances game play, players’ tactics, and “feel”, while
persistent chat lowers account churn by providing a compelling reason for players to
return to the game, to renew subscriptions, to engage in Guild politics, and to create
elaborate, long-duration avatars to which players develop attachment and into which they
invest emotion.

TERAZONA DEVELOPER GUIDE 25

Describing Chat
Describing Chat

The Terazona platform provides several key chat solutions:

• Sphere Chat

• Guild Chat

Explaining Sphere Chat

Sphere Chat provides a one-to-one or one-to-many “instant messaging” chat function
within Terazona-based games. Players can exchange messages directly with other players’
Characters within their Character’s Sphere of Interest (SOI). There are several key
concepts within Sphere Chat:

Whisper

Normally, a Character’s messages are broadcast to all other Characters within the
broadcasting Character’s SOI. However, a player can make their Character whisper to
another Character. In this case, the communication is private and not broadcast to other
Characters.

Emotes

Players can type or choose a selection of emoticons, or emotes. These are used to convey a
feeling (instead of a communication) to Characters receiving the message. For example,
instead of a player causing their Character to say “I feel angry”, they can activate the sad
emote. In this case, other players do not “hear” a message but instead get a textual (or
visual) display that says “Character Fnord feels angry”.

Auditing

All Sphere Chat messages (their sender, recipient, and content information) can be
audited and stored within an Audit Database (AuditDB) for record-keeping and future
reference. Sphere Chat messages can be stored pre- or post-filtering. Game Masters and
system administrators can examine a specific player’s or Character’s messages in case of
allegations of spamming, stalking, or abuse.

Explaining Game Guild Chat

Guild Chat provides a one-to-one or one-to-many “bulletin board” chat function within
Terazona-based games. Players command their Characters to create or subscribe to Guilds
and exchange messages with other players’ Characters that are members of the same
Guilds. Guilds are useful ways for players to organize quests and associations. Guild
creation parameters are game-specific; some designers allow all Characters to create

26 CHAPTER 8
Guilds while others enforce some minimum skill or experience requirement for Guild
creation privileges. There are several key concepts within Guild Chat:

Persistent Membership

Guilds can be either persistent or non-persistent membership. When a Character joins a
non-persistent membership Guild, their membership lasts only for the duration of that
game play session (or until they choose to leave the Guild). If the player logs out and logs
back in again, their Character will no longer be a member of that Guild and they must
rejoin.

Non-persistent membership Guilds are useful for in-play, transient memberships or for
location-specific information. For example, on entering a particular town, a Character
can be joined to a non-persistent membership Guild that simulates a town notice board
or public newspaper that relays local gossips and town information to them. When they
log out or leave the town, their subscription to this information source automatically
ceases.

Persistent membership Guilds are useful for long-duration quest-based activities or for in-
game player politics. Membership within popular Guilds can become a valuable and
prestigious perk for players, while secretive associations such as a Guild of Assassins can
provoke fear and excitement within a game community.

Persistent Messages

Guilds can have either persistent or non-persistent messages. With persistent message
Guilds, all Guild messages are stored within the Game Database and can be retrieved by
Guild members. Messages that arrive while Guild members are offline can be sent to
them on-demand after their Character logs back in. In this way, persistent message Guilds
function similarly to conventional email.

Non-persistent message Guilds feature transient messages that are not stored within the
Game Database. Instead, they are broadcast to all currently logged in Guild members and
then flushed from the active system (they are still stored within the AuditDB). Non-
persistent Guild members who are offline at the time a message is broadcast will not
receive that message.

Moderators

Guilds can have one or more Moderators (Mods). These Mods are a “high-status” Guild
member. The Character that creates a Guild is automatically made the initial Guild Mod.
Mods can “promote” other Guild members to become Mods. However, a Mod cannot
demote other Mods back ordinary Guild member status. Where there is a single Mod in a
Guild, that lone Mod can delete the Guild and, similarly, if a single remaining Mod
resigns their Guild membership, then that Guild automatically disappears.

TERAZONA DEVELOPER GUIDE 27

Describing Chat
Public and Private Guilds

Guilds have “Inviter Attributes” that control the admission rights to particular Guilds.
After creating a Guild, players can be allowed to choose how to regulate Guild
admissions. Open Guilds will allow any game Character to join without an invite, while
closed Guilds enforce Moderator Invitations: a Guild Mod must explicitly send an
invitation to a Character offering Guild membership. Mods can therefore restrict
membership of Closed Guilds to particular classes or skill levels of Characters.

Extended Guild Features

Game Guilds are not restricted simply to the exchange of chat message content but
enable members to share and distribute objects among members and also to alter
members’ Character attributes across the entire game world. Game Guild members can
share “manna” to cast extra-strong spells, or simple membership of a Game Guild can
automatically confer extra wealth or strength or otherwise modify members’ attributes.

Game Guilds enable you to implement Guilds of Sorcerors, Clerics, or Assassins that can
increase their members’ powers. This can be very advantageous within an MMOG, and
encourages large-scale affiliations and inter-Guild rivalry that improve game playability
and “thrill”.

Game Guilds enable Players to communicate with each other using many different
channels. They can share strength, manna, karma, luck, or gold, or any in-game object or
property. The exact nature and quantity of sharing is defined by game designers, coded by
game developers, and validated by the Game State Servers.

Using Game Guilds

Game Guilds are a new technology within Terazona. Although they can provide
communication facilities between Players, the older Sphere Chat and Guild Chat services
are better suited for transferring text messages. Game Guilds enable players or groups of
players to share game objects and modify player abiltiies and inventories over great game
distances.

For example, Game Guilds enable game designers to specify an in-game "religion" or
"faction" that is aligned to a specific deity. In return for pledging allegiance to this deity,
member Characters can receive periodic or permanent alterations to their Character
Properties, such as an increase in "manna". "luck", "karma", or any game-specific
Character attributes. They can also be used to cast a particular "spell" on all members of
that Game Guild.

28 CHAPTER 8
Game Guilds can feature association references to other Game Guilds, providing game
designers with convenient methods to constrain and encourage inter-Guild cooperation
and compeittion.

Implementing Game Guilds

Game Guilds utilize a layer of servers within the Terazona cluster known as Game Guild
Servers (GGSs) that are additional and orthogonal (though fully connected) to the Game
State Server (GSS) layer. GGSs communicate with each other and periodically with GSSs
to propagate Game Guild-specific Entity State Updates between Game Guild members.

Filtering Chat Content

Sphere Chat and Guild Chat messages can be filtered at two points: on the server (by
game administrators) and on the client (by users or administrators). Using a simple XML
“bad words” file, rude, profane, and abusive language can be specified for silent
truncation. Players can still create “bad” messages, but other players with content filtering
activated will not receive the “bad” content.

�

�

�

Chapter

 9
Why Zona Modeler? • 30

Understanding Zona Modeler • 30

Summarizing Zona Modeler • 31
Zona Modeler

Zona Modeler provides an XML-based rapid application
development (RAD) tool for creating bandwidth-optimized
game objects within networked game architectures. During
design-time, Zona Modeler auto-generates Java and C++ code
for easy Client- and Server-side integration and deployment.
During run-time, Zona Modeler provides a persistence layer by
managing complex mappings between in-game objects and
database records using object-relational technology. This
enables fault-tolerant game world persistence and failover, data
security and privacy, and game auditing.
29

30 CHAPTER 9
Why Zona Modeler?

Zona Modeler provides a rapid and comprehensive solution to the problem of creating
and optimizing networked game objects to communicate and update Entity states across
distributed game environments and then persisting Entity states to a database.

Creating optimized network objects without Zona Modeler requires the programmatic
development of data structures (such as C++ structs) within the main body of game code.
There are a number of problems with this approach.

Game logic becomes intermingled with network game object declaration. Furthermore,
there is no central domain where network game objects can be defined and this creates
the potential for redundancy and mismatch between NPC Server and GSS game code.

Understanding Zona Modeler

Zona Modeler enables Terazona developers and designers to separate network game
object development from game logic development. This decoupling also makes possible
an enhanced workflow during design-time where game developers can work on game
logic while game designers can work on game object design.

During run-time, Zona Modeler optimizes the bandwidth of the network messages
required to propagate Entity state updates. Without Zona Modeler, to update a single
property attribute of a game object, a Client would have to send a complete binary object
("blob") across the wire to the GSS. Each subscribed GSS would then have to extract the
object from the blob, identify the changed parameter, validate the change, and update its
server-side game objects.

Configuring Clients and GSSs to send only the changed values for specific attributes
("entity deltas") required the explicit setting and clearing of dirty, or changed, property
attributes. Although this conserved bandwidth and reduced unnecessary messages, it was
cumbersome for the developer.

Zona Modeler now handles all entity deltas transparently. Network game objects created
or modified within the Zona Modeler graphical user interface (ZMUI) generate
bandwidth-optimized C++ and Java code that can be transparently compiled and
deployed across the Terazona server cluster and on Clients.

Game developers can focus on game logic and not network logic, while game designers
can develop game objects in parallel, non-programmatically, and continually refine and
modify them without interrupting game logic code development.

TERAZONA DEVELOPER GUIDE 31

Summarizing Zona Modeler
Summarizing Zona Modeler

Zona Modeler provides some very powerful features that enable distributed,
heterogeneous transaction state processing:

 Zona Modeler enables designers to select certain attributes of game objects as Audit
candidates or to select an entire object for Auditing.

Zona Modeler objects not only enable auto-generated, optimized “object deltas”, but also
provide transparent and uniform interoperable object layout within the heterogeneous
distributed Terazona architecture. For example, game objects generated by Zona Modeler
are interoperable between Big Endian and Little Endian systems safely and automatically.

Zona Modeler objects solve type interoperability issues automatically between systems
that using various languages running within the Terazona heterogeneous architecture.

Zona Modeler objects also solve someclassic heterogeneous distributed system problems
transparently. For example, Zona Modeler enables the easy and automatic identification
of remote objects within distributed systems, handling their scoping and lifetime.

Zona Modeler objects support inter-object persistable association and attributes for that
association.

Zona Modeler provides features such as the creation of “Interface/Abstraction” objects to
enhance model reuse in various model components.

32 CHAPTER 9

�

�

�

�

�

�

�

�

�

�

�

Part

 II

Chapter 10 • 35

Client API Introduction

Chapter 11 • 39
GSAPI Introduction

Chapter 12 • 43
Regions And Maps API

Chapter 13 • 57
Physics and AI API

Chapter 14 • 59
NPC Controller API

Chapter 15 • 63
Timers API

Chapter 16 • 69
Chat Client API

Chapter 17 • 89
Server Chat API

Chapter 18 • 99
Failover & Fault Tolerance

Chapter 19 • 101
Cheat Prevention
API Analyses

This part of the Terazona Developer Guide analyzes the design
and operation of Terazona itself, and explains how the Client
and Server APIs access this functionality.
33

Chapter 20 • 103
Game State Records • 103

34

�

�

�

�

�

�

Chapter

 10
Analyzing the Client API • 36

Understanding ZonaServices • 37

Understanding ChatCallBack • 37

Understanding GameGuildCallback
• 37

Understanding EntityCallBack • 38

Understanding GameStateCallback
• 38
Client API Introduction

The C Client API (CAPI) enables game developers to
communicate with the Terazona, a complex server cluster
environment, without a performance overhead or a requirement
to learn distributed computing. The CAPI provides a game-
centered suite of powerful functions.
35

36 CHAPTER 10
Analyzing the Client API

Client-side entity management is handled transparently thanks to a background, invisible
entity caching service called the ZonaEntityManager (ZEM). As a result, you do not need
to explicitly manage Entities or their memory allocation or de-allocation. This is handled
invisibly by an interaction between the managing GSS and the Client ZEM. The GSAPI
provides simple Entity and Character (a special subclass of Entity with a Name) lookup
and utility functions. Each GSS maintains a data-driven, event-based record of which
Entities it controls, and hence which Entity Services to expose to its managed Clients.

The CAPI provides you with convenience functions that enable you to retrieve Entities
by EntityID. The core class is ZonaClientEntity, and ZonaClientCharacter
inherits from this superclass.

The CAPI consists of a class hierarchy that enables a developer to access all aspects of
character game state. There is one main utility function class:

• ZonaServices (subclassed from its parent, BaseServices).

There are five main callback classes that are used to receive Entity data updates, Property
updates, event triggers from the managing GSS, and to manage Game Guild and Chat
services. These are:

• ChatCallback

• EntityCallback

• GameGuildCallback

• GameStateCallback

• GuildCallback

The ChatCallback and GuildCallback classes are made available for implementing
Terazona’s Chat interface. They are not required for core Terazona functionality and
developers can implement or integrate a custom chat system instead of Terazona’s
reference chat implementation.

All of the classes are exposed within a Terazona developer installation as C++ header files.
The interface files are collected within this directory and its sub-directories:

%ZONA_HOME%\include\

TERAZONA DEVELOPER GUIDE 37

Understanding ZonaServices
Understanding ZonaServices

ZonaServices is the main class that provides access to Terazona services. The most
important services provided within this class are:

• Player Management

• Character Management

• Property Updates

• Game State Subscription and Publishing

These sets of functions provide many of the capabilities needed for basic game
development. Timing Services, Event Triggers, Game Guild, and Chat Management are
described in later sections.

BaseServices is the super class of ZonaServices. BaseServices has minimal functionality
such as initialization, login and sending and receiving game states. If there was a
requirement for a super thin client to run on PDAs, a “lite” library can be used, which
includes only the BaseServices and has a smaller footprint.

Understanding ZonaClientCharacter

The ZonaClientCharacter class is very simple. It provides convenient access to the binary
data object that comprises the Character Entity Object of a player. ZonaClientCharacter
is sub-classed from ZonaClientEntity.

The Terazona system is optimized for fast runtime performance using binary objects. You
can use the Auditing Server to extract “regular” entity data and classes and store these in
normalized tables. Beneath the CAPI “layer”, Zona Modeler autogenerated classes handle
the optimization of binary object instantiation and Property update deltas. You use the
ZonaClientCharacter class to manage player data logically and simply.

Understanding ChatCallBack

The ChatCallBack class defines functions used for processing incoming Sphere Chat
Message data from other clients.

Understanding GameGuildCallback

The GameGuildCallback class defines functions used for processing incoming Guild
Chat Message data from other clients.

38 CHAPTER 10
Understanding EntityCallBack

The EntityCallBack class defines functions used for processing Entity Property updates
and enter/exit Sphere activities.

Understanding GameStateCallback

The GameStateCallback class defines functions used for processing the incoming data
from other clients.

�

�

�

Chapter

 11
Understanding Game State
Validation • 40

Implementing the GSAPI • 41

Understanding Game State Message
Flow • 42
GSAPI Introduction

The Game Server Plugin API (GSAPI) enables game developers
to communicate with Terazona. The GSAPI’s container is a Java
Virtual Machine (JVM), but developers write to the GSAPI
using standard C/C++ with no requirement to learn or know
Java (although a forthcoming version of Terazona will provide a
Java API as an option). Additionally, the GSAPI provides a
game-centered suite of powerful functions that encompasses
Validation, Game State publishing, and data persistence and
management.
39

40 CHAPTER 11
Understanding Game State Validation

The server GSAPI API is a C++-based API used to create a dynamic link library (DLL)
that is loaded by the GSSs and Sphere Servers. When loaded, this DLL is called the GSS
Plugin. As the GSSs receive Client updates, individual GSSs pass the messages to their
GSS Plugins. Game state updates and Property updates are validated within the GSS
Plugins. Likewise, if a collision between moving objects is to be detected on the Server,
the GSS Plugin is the place for developers to embed the collision algorithm.

There are several key files:

These header files contain all of the calls used by the Game State GSAPI to handle all of
the Game State Validation. These are all virtual functions that the developer can
implement to create game logic and respond to Client requests.

Table 11-1. GSAPI Key Files

File Name Description

ZonaPublish.h Contains functions for publishing game state messages
across the Terazona cluster, functions for setting timer
events, and various utility functions.

ZonaCharacterValidate.h Contains functions to validate Client Character management
requests (that is, to create, update, or delete).

ZonaEntityValidate.h Contains functions to validate Client requests for Entity
property updates and Child Entity modifications. Also
contains functions to validate and monitor entry and exit of
Entities and Characters from Spheres of Interest currently
managed by GSS.

ZonaGameStateValidate.h Contains functions to validate incoming Client Game State
Data, and to control the updating of replicated Ghost data on
other GSSs.

ZonaGuildValidate.h

ZonaRegionValidate.h Contains functions to initialize and manage Regions and
Entity placement.

ZonaSystem.h Contains functions to manage GSSs, Clients, and system
utilities.

ZonaTimerEvents.h Contains functions activated by preset event triggers for
Entities, Regions, GSSs, or system-wide events.

All callback functions are prefixed with the “on” modifier.

TERAZONA DEVELOPER GUIDE 41

Implementing the GSAPI
Implementing the GSAPI

The GSAPI is implemented as a DLL that interfaces with the server through system-
defined functions in the ZonaServerPlugin.lib static library. The name of the
resulting DLL should be suitably configured in the zona.xml configuration file. The
Game State Servers (GSSs) as well as the Sphere Servers and the GGS use this file to load
their appropriate libraries at startup. When compiled, the same DLL is installed on all
Terazona servers. At runtime, the DLL exposes different functionality if instantiated on a
GSS rather than the GGS.

For example, the TileTest demo application provided with the release uses a plugin DLL
called TileTest_ServerPlugIn.dll.

The corresponding entry in the zona.xml file is:

...
<ClusterCommon>
 <LibName authDynamicLibName="AuthSamplePlugin.dll"
 cryptoDynamicLibName="ZonaCrypto"
 processDynamicLibName="TileTest_ServerPlugIn"/>
...
</ClusterCommon>

42 CHAPTER 11
Understanding Game State Message Flow

The following diagram illustrates the flow of network messages in Terazona:

The GSAPI determines valid property updates and messages and forwards them to the
messaging subsystem. It can also determine real-time Entity collisions and forwards the
relevant collision notification to subscribed Clients. Invalid messages are dropped or
negatively acknowledged, and corrected on demand.

The messaging system can then broadcast the message to the appropriate Clients.

The GSAPI uses Regions to determine collisions and perform validations on property
and game state updates.

Figure 11-1. Terazona Network Message Flow

Client A

Game State
Server
(GSS)

Client-specific
GSS Plugin

(GSAPI)

Client CClient B Client D

Validated GameState

Unvalidated
GameState

Property Updates
Game State Messages

Game State
Server
(GSS)

Unvalidated
Property Data

Validated Property
Update

�

�

�

�

�

�

�

�

�

Chapter

 12
Analyzing Regions • 44

Locating Regions • 45

Managing Movement • 46

Managing Region Ownership • 49

Summarizing Regions • 49

Understanding the Master/Ghost
Entity Relationship • 50

Entering a Sphere and Exiting a
Sphere • 51

Managing Maps • 51

Publishing Data Using Functions •
54
Regions And Maps API

This chapter explains how to locate and move Characters and
Entities within a Terazona MMOG game world using the
concept of Regions. It also explains how the Terazona game
world can be subdivided into Maps.
43

44 CHAPTER 12
Analyzing Regions

The Terazona game world is represented using a pseudo-spatial arrangement of Regions,
which roughly correspond to geographical coordinates. All the Regions that immediately
surround a particular Region are its Neighbors. Regions use the a proximity paradigm of
Neighbors to restrict the broadcasting of Entity state updates only to those Entities that
are “neighbors”.

An Entity could be in any Region at any given point in time. The game states from that
Entity will be shared among its surrounding Regions. As a result, only those Entities
presently in neighboring Regions will receive the updates. This is equivalent to standing
close to someone and seeing what they are doing. If you stand further away, you will
eventually be unable to see what they are doing.

The definition of a Region is completely customizable. The developer is free to
implement any algorithm to implement the game world’s physical geometry.

For example, a game world could be divided into equally sized spatial grids. Each grid
could represent a Region. In this case a Region’s neighbors are the eight grids that
surround it. This is a classic Euclidean geometry.

TERAZONA DEVELOPER GUIDE 45

Locating Regions
Locating Regions

This diagram illustrates this Region concept using the classic Euclidean geometry:

Figure 12-1. Regions and Neighbors

For convenience, the Neighbors are annotated according to their x,y grid coordinate
displacement from the central Region. The Region’s coordinates in this system would be (2,2).

Y

X

Neighbor_11

Neighbor_12

Neighbor_13

Neighbor_21

Neighbor_23

Neighbor_31

Neighbor_32

Neighbor_33

Region

Coverage Level 2Coverage Level 1

46 CHAPTER 12
Analyzing Maps

Maps enable Terazona to load subsets of the entire game world on-demand as Entities
travel within specific sets of locations. Maps thus provide a way to do both physical and
logical game segmentation.

Maps provide a way to host several different game instances on the same GSS. Players in
one Map will be unable to interact with players within another loaded Map. However,
both sets of Players could play within the same game terrain and configuration. This
enables game designers to segment users into different player cohorts.

Maps also provide a way to subdidive the entire game world into different, independent
segments. This provides a way for Terazona to simulate the “shards” or “zones” design
found within many MMOG game designs. You can also use independent, dissimilar
Maps to provide dungeon “levels” or different floors of rooms or structures. Players can
move “between” floors by transferring from one Map to another, and this can be
represented in-game using a stairwell/teleporter/elevator metaphor as the Entity is re-
assigned to a different Map.

Load-Balancing with Maps

Each GSS loads a single Map or multiple Maps selectively, either during GSS
initialization or later, on-demand. Loading each Map causes corresponding data
structures for Regions and Neighbors to be created inside the Server plugin.

The notion that each GSS selectively loads each Map into memory on-demand is simple,
but its implementation can be as complex or intricate as your game design demands.
Game designers and game developers can work together to optimally subdivide the Game
World and thus most effectively manage the Map properties and transitions within each
GSS plugin.

Designers can, for example, designate a certain set of GSSs to serve a specific portion of
the Game World, perhaps one that often experiences high Player demand or where
avoiding gameplay slowdowns is most critical. This game-specific tweaking can result in
higher scalability, increased Player satisfacvtion, and better load sharing within the
Terazona cluster.

Managing Movement

Regions are one of the most powerful features of the Terazona architecture. The Region
concept enables game developers to create a game world that completely removes the
zoning boundaries from MMOG games. This system also provides the capability to
transparently scale the number of players into the tens of thousands for a single virtual
world.

TERAZONA DEVELOPER GUIDE 47

Managing Movement
As a Character moves around within the game, its current Region location changes. The
Region location is validated and constrained by developer-written game logic within the
Server plugin. Each Region is ‘owned’ by a particular GSS. This dynamic ownership is
assigned by the Sphere Server and is determined by several factors including the load on
each GSS as well as which players are connected directly to that GSS. When two or more
GSSs attempt to take ownership of a single Region simultaneously, the Sphere Server
arbitrates. This reduces GSS-GSS contention. For more details, see Managing Region
Ownership on page 49.

Understanding the Sphere of Interest

The player’s master Entity Object is stored on the GSS currently assigned ownership of
the Region where the Client is currently located. We call these the managing GSS and the
owning Client. The Entity Object is also replicated as a “ghost” on all of the GSSs that
control any Regions neighboring the Character’s Region.

The set of neighboring Regions “around” a Character defines that Character’s ‘Sphere of
Interest’, or SOI. This is area in which the Character ‘sees’ (receives updates from) other
players and objects, and other players and objects within the SOI see the Character (if
subsribed to game data updates). As other Characters or objects enter this Sphere of
Interest, the GSS “owning” those Regions becomes aware of the Character’s proximity
within its Regions and automatically publishes all other Characters’ relevant data to the
newly arrived Character.

48 CHAPTER 12
This process looks like this:

This shows the following layout on each GSS:

GSS1 contains the Player 1 Master Entity Object

GSS2 contains the Player 2 Master Entity Object

As Player 1 moves into an adjacent region to Player 2

GSS1 receives a copy of the Player 2 Ghost Entity Object

GSS2 receives a copy of the Player 1 Ghost Entity Object

As they move apart the replication will be discontinued automatically.

GSS1

Player1

GSS2

Player2

 GSS2
Player2

GSS1
Player1

Game Map

GSS1

Player1

Copy of Player2

GSS2

Player2

Copy of Player1

 GSS2
Player2

GSS1
Player1

Game Map

TERAZONA DEVELOPER GUIDE 49

Managing Region Ownership
Managing Region Ownership

GSSs feature “sticky” Region ownership. Once it takes ownership of a Region, a GSS
relinquishes this ownership of a Region only when all Entities have left the Region and
are no longer subscribed to Entity updates from that Region.

The Sphere Server arbitrates all ownership requests between the GSSs, caches the
ownership of all Regions, and periodically pushes this data to the other GSSs and the
Region monitor for rapid lookup and display.

The Master GSS is the GSS that owns a specific Region and possesses the Master Entity
Object for all the Characters and Entities (including all Child Entities) in that Region.

The Ghost GSS is any GSS that possesses a Ghost Entity Object of any Character, Entity,
or Child Entity.

A Local Entity is an Entity located within a Region owned by the same GSS that
currently possesses the Master Entity Object for that Entity. Local Entities’ Property and
Game State updates are validated and modified directly by their local, Managing GSS.

A Remote Entity is an Entity located within a Region owned by a GSS that currently
possesses a Ghost Entity Object for that Entity. Remote Entities’ Properties and Game
States are modified by their local GSS upon the reception of update requests from the
Master GSS.

The GSS that owns a specific Region processes all Property updates and game state
validations within that Region, and propagates the Entity state changes to all other GSSs
subscribed to updates from that Region.

During login, the Dispatcher assigns Clients to the least-loaded GSS. When that GSS
relinquishes ownership of the Client (that is, it changes from that Client’s Master GSS to
a Ghost GSS), then although that GSS continues to communicate with that Client, it
forwards for validation all traffic for that Client to the GSS currently that Client’s Master
GSS. In effect, the original GSS functions only as a message router.

Terazona’s dynamic Region ownership is a key element that allows Players to experience a
seamless world. By caching the Entity state information using master and ghost copies,
rapid promotion and demotion of Master and Ghost Entity Objects, and by ensuring
that the active Entity state validation relocates on-demand to least-loaded GSSs, Terazona
provides a transparent way for game developers to create enormous worlds without user-
perceptible boundaries or loading lag.

Summarizing Regions

The Master Entity Object is located on the GSS that owns the Region where the Client is
currently located.

50 CHAPTER 12
The Ghost Entity Object is replicated on every GSS that owns any of the neighboring
Regions where an Entity has subscribed to Property updates and Game State Messages.

The GSS is responsible for all collision detection and messages broadcast for all Entities
within the set of Regions that it owns.

Each GSS requests ownership of a Region when one of its Managed Clients enters an
empty, unowned Region. A Managed Client’s Master Entity Object is located on its
Managing GSS.

Each GSS relinquishes ownership of a Region when all the Entities have left the Region.
The GSS tells the Sphere Server that its no longer interested in that Region.

The Sphere Server is the arbitrator when two GSS requests for ownership for the same
Region at the exact same instant.

Each GSS caches ownership information for every Region in the universe in a lookup
table.

When a Client sends its data to a GSS, if the Region where tha Client is located is owned
by that GSS, then that GSS processes the Client data. If not, the GSS forwards the Client
data to the GSS that currently owns the Region where the Client is located.

Understanding the Master/Ghost Entity Relationship

The Player’s Character data is copied to the GSSs that control the neighboring Regions.
This is a Master / Ghost relationship.

The Master controls all of the updates of the character’s Entity Object to the surrounding
Ghost Entity Objects.

Updating Ghost Entity Objects

The Ghost Entity Objects get updated in the following manner:

1 The Master GSS Plugin calls setXXXX().

2 This call causes the Master GSS to send messages to any Ghost GSSs that contain a
Ghost Entity Object of the Master Entity Object.

3 These Ghost GSSs then trigger the Ghost Entity Object update callback function
ZonaEntityValidate::onNotifyEntityUpdate(). Any Clients managed by
this GSS and that have subscribed to Entity updates will receive an
EntityCallback::onNotifyEntityPropertyUpdate() callback and update
their local Entity data. Entities that are members of Guilds associated with the
publishing Entity can also receive Entity State Updates.

TERAZONA DEVELOPER GUIDE 51

Entering a Sphere and Exiting a Sphere
Entering a Sphere and Exiting a Sphere

As a player’s Character moves between game Regions their ‘Sphere of Interest’ (SOI)
moves with them. As one player’s Character moves within other players’ SOIs the GSS
calls the ZonaEntityValidate::onEnterEntity() and
ZonaEntityValidate::onExitEntity()) callbacks on the Plugin to prompt the
Plugin to automatically push the new data out to subscribed Clients.

When player A exits Player B’s Sphere, player B is informed that player A has left the
Sphere. This sequence is outlined below:

Managing Maps

Terazona’s APIs enable you to manage disjoint, distinct sets of Regions as a Map. Each
Map is distinguished by a MapId integer.

Table 12-1. Sequence For Client A Entering Client B’s Sphere

Client GSAPI GSS

Player A enters Player B’s sphere

ZonaEntityValidate::
onEnterEntity() message
is sent to the Plugin.

ZonaEntityValidate::
onEnterEntity(){
developer code here
}

EntityCallback ::
onNotifyEntityJoinedSphere()
called on Client.

Table 12-2. Sequence For Client A Exiting Client B’s Sphere

Client GSAPI GSS

Player A exits Player B’s sphere

ZonaEntityValidate::
onExitEntity() message
is sent to the Plugin.

ZonaEntityValidate::
onExitEntity(){
developer code here
}

EntityCallback ::
onNotifyEntity
DepartedSphere()
called on Client.

52 CHAPTER 12
Initializing Maps

During startup (or when an Entity moves into an unowned, unloaded Region) the GSS
calls loadMap(). This causes an onLoadMap() callback to fire within the Server
Plugin. You should place your initialization code to execute this function:

bool onLoadMap(int mapId)

You should also notify Terazona within the Server Plugin of the size of the in-memory
Map by calling this function:

int getRegionCount (int mapId)

You then must also notify Terazona within the Server Plugin of the dimensions of the in-
memory Map by calling these functions:

int getRegionDimensionX(int mapId);
int getRegionDimensionY(int mapId);
int getRegionDimensionZ(int mapId);

Managing Maps

Each Entity’s MapId must be set by the Server Plugin in the
ZonaEntityValidate::onEntityJoinedGame() callback:

int onEntityJoinedGame(ZonaServerEntity* entity);
{
 entity->setMapId(0); // assign a mapId to the entity
 return 0; // return whatever region the entity
 // has to start in the corresponding map
}

After this, the Server Plugin can trigger a map change for an Entity by setting the Entity’s
mapId within any callback.

You can call this function as required:

void getRegionNeighbors(int mapId, int rgnId)

Checking Neighbors

You can check neighbors using the callback ZonaRegionValidate::

int* onGetRegionNeighbors (int mapId, int regionId,

TERAZONA DEVELOPER GUIDE 53

Managing Maps
 byte regionCoverage, unsigned int* numIds)

Monitoring Maps and Regions

The Region Monitor process attaches to the Sphere Server and can display a grid
illustrating the current Map/Region usage. It uses the getMapDimensionX|Y|Z()
calls.

54 CHAPTER 12
Publishing Data Using Functions

As the Characters move around in the game, they must publish their new property and
game state data to the GSS. There are several API function calls available for different
publishing requirements.

Each of these calls publishes specific data to other GSSs, other Clients, and the game and
audit databases.

Receiving Data Using Functions

There are corresponding callback functions for updating the Entity Object with new,
published data.

Table 12-3. Data Publishing Functions

Data Publishing Functions Description

ZonaServices::
publishEntityPropertyUpdates()

Publish Dirty Properties for a specific Entity.

ZonaServices::
publishAllEntityProperties()

Publish all Properties for a specific Entity.

ZonaClientEntity::
publish()

Publish calling Entity’s Dirty Properties.

ZonaClientCharacter::
publish()

Publish calling Character’s Dirty Properties.

ZonaGSPublish::
publishGameStateMsgInSphere()

Publish a Game State Message to all subscribed Entities
within the calling Entity's SOI.

ZonaGSPublish::
publishGameStateMsgToEntity()

Publish a Game State Message only to a specified Entity.
The Client hosting the Entity receives the message, even
where that Client did not subscribe to Game State
Messages.

ZonaGSPublish::
publishGameStateMsgTo
AllMasterEntities()

Publish a Game State Message to all Master Entities. This
is a convenience function that calls ZonaGSPublish::
publishGameStateMsgToEntity() internally.

Note that the Game Database and Audit Database are only updated following a call to
ZonaServerEntity::save(bool audit). Calling this function causes the Game Database to
be updated, while the boolean option controls whether or not the Audit Database gets
updated.

Table 12-4. Data Reception Functions

Data Reception Functions Description

EntityCallback::
onNotifyEntityPropertyUpdate()

Called by ZonaServices to notify the Entity of a Property
update.

TERAZONA DEVELOPER GUIDE 55

Receiving Data Using Functions
EntityCallback::
onNotifyEntityParentChange()

Called by ZonaServices to notify the Entity of a change in
its Parent Entity.

EntityCallback::
onNotifyEntityJoinedSphere()

Called by ZonaServices to notify the Entity that another
Entity has entered its SOI.

EntityCallback::
onNotifyEntityDepartedSphere()

Called by ZonaServices to notify the Entity that an Entity
has exited its SOI.

GameStateCallback::
onReceivedGameStateMsg()

Called by ZonaServices to notify the Entity of a change in
Game State Data.

Table 12-4. Data Reception Functions

Data Reception Functions Description

56 CHAPTER 12

�

�

�

Chapter

 13
Detecting Collisions and Simulating
Physics • 58

Using Artificial Intelligence • 58

Managing Items • 58
Physics and AI API

Physics and artificial intelligence is a key component of a
realistic MMOG. This chapter describes how to embed such
realism within Terazona.
57

58 CHAPTER 13
Detecting Collisions and Simulating Physics

Collision detection is normally validated on the GSS using through the GSAPI. The
Client should handle its own collision detection, but the GSS usually validates any
collision detection occurring between characters and other characters or NPCs. This is
not a requirement, merely a recommendation. Developers are free to implement all levels
of collision detection and physics wherever they wish. Tuning a system for performance
and load-balancing, however, requires careful game design.

Using Artificial Intelligence

AI is normally handled completely by the NPC Server. The NPC Server functions as a
Trusted Client within the Terazona cluster.

Managing Items

Most of the item management is handled by the NPC Server, but we will go into the
some of the server-side specifics of item management. The NPC Server is completely
developer definable. We do provide an example framework that works well for handling
all of the items and Non-Player Characters within the game.

�

�

�

�

�

�

Chapter

 14
Managing Items • 60

Understanding the NPC Controller
• 60

Creating the NPC Controller • 60

Managing Child Entities • 61

Tuning NPC Server Performance •
61

Managing NPC Servers • 62
NPC Controller API

This chapter explains how to control Non Player Characters
(NPCs) using the NPC Server.
59

60 CHAPTER 14
Managing Items

Most of the item management is handled by the NPC Server, but we will go into the
some of the GSAPI side specifics of item management. The NPC Server is completely
developer-configurable. The Terazona installation provides an example implementation
that works well for handling all of the items and Non-Player Characters (NPCs) within a
game.

In order to describe how Terazona handles item management, this chapter describes some
of the basic concepts behind the NPC Server.

Understanding the NPC Controller

The NPC Server is a server-side Client that manages Non-Player Characters (NPCs) and
game items.

Like Player Clients, the NPC Server uses the Client API (CAPI) library to interact with
other Clients in the game world. For security, NPC Servers should be deployed behind
the firewall.

A game deployment may have several NPC Servers. Multiple NPC Servers can provide
greater performance, as well as redundancy and fail-over capability during single NPC
Server crashes.

Creating the NPC Controller

Each NPC Server logs into the Terazona cluster as a normal Client. Although every NPC
Server may login to several ZonaServices, only one login per NPC Server is
recommended. The Character Entity used for logging in the NPC Server is called the
NPC Controller.

Create a user entry in the database for the Controller to describe the user role. During the
very first login, the NPC Server creates the Character Entity. During this Character
creation, the Entity is set to ZONA_ET_IS_HIDDEN. This prevents other Clients from
receiving any Controller game states.

TERAZONA DEVELOPER GUIDE 61

Managing Child Entities
Managing Child Entities

The NPC Server controls all NPCs, such as monsters and other game items (not
controlled by a Player’s Character). Each of these items becomes a Child Entity of the
NPC Controller:

Individual NPCs, if mobile, can roam to any permitted location within the game world.
The associated NPC Server thus receives all the game states within the locale of each of its
owned NPCs.

Tuning NPC Server Performance

Because each NPC Server will handle several items and NPCs that are spread out across
several (possibly disjoint) Regions, NPC Servers can receive large quantities of messages.
Therefore, good game design can mean distributing NPC Servers “across” the game
world that control specific Regions clusters, or areas.

Figure 14-1. NPC Server Process Schematic

NPC
Controller
(Character Entity)

NPC
(Child Entity)

NPC
(Child Entity)

NPC
(Child Entity)

GSS

NPC Server Process

62 CHAPTER 14
Managing NPC Servers

To monitor the status of NPC Servers via the Zona Administrator, developers should
subclass and implement the CAPI BaseServer class:

BaseServer.cpp.

This enables monitoring, startup, and shutdown of NPC Servers. Developers implement
the BaseServer functions provided to enable NPC Server control.

�

Chapter

 15
Understanding Timer Events • 64
Timers API

This chapter explains how you can set Timers to control game
world events.
63

64 CHAPTER 15
Understanding Timer Events

Terazona includes a Timer Event Functionality that fires events on the Server. Clients
(either Player’s Characters or NPC Entities) send requests to their GSSs to set triggers
that will activate based on local or system-wide clocks. The GSSs then fire the events at
the set delay, activating. This can be used in many different ways, such as creating events
that happen at specific times in the world, Players’ birthdays, anniversaries, weather
changes, or recurring events such as a geyser going off or an entertainment show
happening.

There are four different types of Timers:

1 Entity Event Timer

2 Region Event Timer

3 GSS Timer

4 World Timer

The timers can be set as recurring timers. The timer ‘period’ value determines the
recurring nature of the timer while the delay is set in milliseconds. For example, a ‘period’
value of 3, would make the event fire 3 times.

All the timers are set within the GSS Plugin using one of the
ZonaPublish::setXXXXLevelTimerEvent(...) functions. All the timers return
a Task ID for the timer event (and a -1 if unsuccessful).

All the timers fire a callback within the GSS Plugin using one of the
ZonaTimerEvent::onXXXXTimerEvent(...) functions.

You can cancel previously set timers using the
ZonaPublish::cancelTimerEvent(int eventId) function.

To set infinitely repeating timers, set the period value equal to –1.

TERAZONA DEVELOPER GUIDE 65

Understanding Timer Events
Using Entity Timers

The ZonaPublish.h call is:

int setEntityLevelTimerEvent(int entityId, long delay,
 byte* eventData, short size, int period)

An Entity-level timer associates with a particular Entity. Entity-level timer events fire in
the GSS that owns the Entity (that is, the GSS that contains the Entity with an
isMaster status set to true when the event triggers). Therefore, even if one GSS sets
the timer, the event may be fired in a different GSS that is managing that Entity at that
time. If the Entity logs out, all associated events will still fire. In these situation, the
ZonaTimerEvents:onLoggedOutEntityTimerEvent() callback fires instead of
the ZonaTimerEvents::onEntityTimerEvent() callback.

Used for time-based spells on specific Characters or Entities. For example, werewolf or
shapeshifter spell and periodic powerups.

The associated ZonaTimerEvents.h callback is:

void onEntityTimerEvent
 (int eventId, ZonaServerEntity* entity,
 byte* eventData, short eventDataSize)

66 CHAPTER 15
Using Region Timers

The ZonaPublish.h call is:

int setRegionLevelTimerEvent (ing mapId, int regionId,
 long delay, byte* eventData, short size, int period)

A Region-level timer associates with a particular Region. Region-level timer events fire in
the GSS that owns that Region at the time the event triggers. Therefore, even if one GSS
sets the timer, the event can be fired in a different GSS. If the Region does not have any
owner when the event is due to trigger, then the event is cancelled.

Used for game-specific traps, triggers, localized weather conditions, or spells associated
with certain temples or tombs.

The associated ZonaTimerEvents.h callback is:

void onRegionTimerEvent (int eventId, int mapId,
 int regionId, byte* eventData, short size)

If a tree falls in Terazona’s forest and nobody is there to watch it fall then it does not make a
sound!

TERAZONA DEVELOPER GUIDE 67

Understanding Timer Events
Using GSS Timers

The ZonaPublish.h call is:

int setGSSLevelTimerEvent
 (long delay, byte* eventData, short size, int period)

A GSS-level timer is associated with the local GSS that sets the timer. GSS-level timer
events fire only in the local GSS Server plugin that set that timer. If that original GSS
shuts down, all GSS-level timer events specific to that GSS are lost.

You can use this timer as a generic timer for internal GSS system maintenance tasks,
database cleanup, cheat analysis, memory cleanup, synchronization, and so on.

The associated ZonaTimerEvents.h callback is:

void onGSSTimerEvent
 (int eventId, byte* eventData, short size)

Using World Timers

The ZonaPublish.h call is:

int setWorldLevelTimerEvent
 (long delay, byte* eventData, short size, int period)

A World-level timer associates with all the GSSs within the Terazona cluster. World-level
timer events fire in the local GSS Server Plugin that set the timer as well as all the other
GSSs and the Sphere Server. If the GSS that sets the world timer shuts down, the events
will still fire in all other, active GSSs. When a GSS comes online, it synchronizes with all
pending world events.

Developers can use this timer for system-wide state synchronization. This can be used to
affect Entities on a system-wide basis. For example, you can use World-level timer events
to create a global in-game clock time.

The associated ZonaTimerEvents.h callback is:

void onWorldTimerEvent
 (int eventId, byte* eventData, short size)

68 CHAPTER 15

�

�

�

�

�

�

�

�

�

�

�

�

�

Chapter

 16
Analyzing Chat Message Structure •
70

Sending Chat • 73

Receiving Chat • 75

Managing Guild Objects • 77

Managing Guilds • 78

Managing Guild Activity • 80

Managing Guild Membership • 81

Moderating Guilds • 82

Receiving Guild Message Data • 82

Demonstrating Guilds • 83

Managing Persistent Messages • 84

Filtering Chat • 84

Demonstrating Chat • 87
Chat Client API

The Chat Client API enables game developers to initiate and
respond to Chat events within Clients and to provide Chat
services for players’ Characters. Chat is managed using a
combination of function calls that are validated by a Client’s
managing GSS and function callbacks that receive validated
Chat data from the Terazona servers. Chat is transmitted
through the GGS network.
69

70 CHAPTER 16
 Analyzing Chat Message Structure

Chat Messages are the basic unit of communication within the Terazona Chat
Framework. A single Chat Message is encapsulated within the ChatMsg class. Clients
exchange these serializable Chat Messages with other Clients by sending them across the
wire to the GGS for validation. Once validated, they are dispatched back across the wire
to the designated recipient Clients, which deserialize the incoming Chat Messages and
respond using a hierarchy of Chat Handlers.

ChatMsg

The ChatMsg class is used for direct Character-Character Sphere Chat and its definition
is found here:

%ZONA_HOME%\include\message\data\ChatMsg.h

In addition to a default blank constructor, the parametrized ChatMsg constructor
enables the message creator to specify the Recipient ID, the intensity level of the message
(that is, whether recipients perceive you as SHOUTING or merely talking), and the
message body.

Within every ChatMsg there are 9 standard attributes:

Table 16-1. ChatMsg Attributes

Attribute Purpose

LONG64 date Specifies the date the message was sent.

int flag Specifies the status of the message, using enumerated MailFlags.

int senderId Specifies the Entity Id of the sending Character.

int recipientId Specifies the Entity Id of the message recipient (the Entity Id can
denote either a Guild or a Character).

char* toCharacterName Specifies an optional recipient Character Name.

char* subject Contains the message subject, in Unicode.

char* body Contains the message body, in Unicode.

unsigned char
intensity

Specifies the message intensity. Although currently not used within
the Terazona Chat Framework, the value is passed through to Clients
so developers can implement custom intensity UI handlers.

int
recipientProperties

Identifies the ChatType, that is, the type of Chat Message. Used
when registering a handler callback for a specific type of Chat
Message.

int id Defines a persistent Id for each Chat Message.

TERAZONA DEVELOPER GUIDE 71

Analyzing Chat Message Structure
The class definition also contains standard functions to serialize and de-serialize the
messages. In addition, there are several special values enumerated within the ChatMsg
class. The ChatMsg Mail Flags enable developers to create email-style messaging
applications for Clients.

The ChatMsg Recipient Id values are used to control message distribution.

Chat Intensity constants are defined within this file:

%ZONA_HOME%\include\zaf\ZonaGlobalConstants.h

Table 16-2. ChatMsg Enumerated Values - MailFlags

Enumeration Value Purpose

FLAG_UNDOWNLOADED 1 If set, indicates this message has not yet been
downloaded.

FLAG_UNREAD 2 If set, indicates this message has not yet been read.

FLAG_DELETED 4 If set, indicates this message has been deleted.

FLAG_REPLIED 8 If set, indicates this message has been replied to.

Table 16-3. ChatMsg Enumerated Values - SpecialRecipients

Enumeration Value Purpose

RECIPIENT_ID_SPHERE -1 Message will be received by all Characters in the
sender’s SOI.

RECIPIENT_ID_SYSTEMWIDE -2 Message will be received by all Characters throughout
the game world. Because all messages require GSS
validation before propagation back to Client, permission
to use this “broadcast” feature of Sphere Chat can be
reserved for game masters or system administrators.

RECIPIENT_ID_BY_NAME -3 Message will be received only by specified Character.

Table 16-4. ZonaGlobalConstants - Chat Intensity

Definition Value Purpose

CHAT_INTENSITY_WHISPER 1 Sets Chat Intensity to “whisper”

CHAT_INTENSITY_TALK 2 Sets Chat Intensity to “talk”

CHAT_INTENSITY_YELL 4 Sets Chat Intensity to “yell”

CHAT_INTENSITY_SHOUT 8 Sets Chat Intensity to “shout”

72 CHAPTER 16
Chat Message Types (used as ChatType in the recipientProperties) are also
enumerated within this global constants file:

%ZONA_HOME%\include\zaf\ZonaGlobalConstants.h

ChatMsgPtrVector

The ChatMsgPtrVector class definition is found here:

%ZONA_HOME%\include\message\data\ChatMsg.h

This is vector of type ZVector that contains a list of ChatMsg objects. The
ChatMsgPtrVector is a container for the incoming and outgoing ChatMsg objects
that provides standard vector modification and iteration functions.

The ZVector class definition is found here:

%ZONA_HOME%\include\util\ZVector.h

ZonaGuildChatMsg

Unlike Sphere Chat, Guild Chat uses this function to send messages to other Guild
members:

GameGuildServiceInterface::
 sendChatMessage (ZonaGuildChatMsg* aMsg)

TERAZONA DEVELOPER GUIDE 73

Sending Chat
Sending Chat

Every instantiated ZonaClientCharacter gains access to the client functions provided
in ZonaServices.h. The function for sending Chat Message payloads is
sendChatMessage().The steps involved in sending a Sphere Chat Message are:

1 Instantiate a ZonaServices object:

m_zona = new ZonaServices(true, true);

2 Create a suitable ChatMsg using the ChatMsg::ChatMsg(...) function. You must
supply three parameters:

a The Recipient Id, defined as an int. Choose one of the following:

• An Entity Id (or a corresponding Guild Id)

• The enumerated value RECIPIENT_ID_SPHERE (-1)

• The enumerated value RECIPIENT_ID_SYSTEMWIDE (-2)

b The Intensity Level, defined as an unsigned char. Choose one of the following:

• CHAT_INTENSITY_WHISPER

• CHAT_INTENSITY_TALK

• CHAT_INTENSITY_YELL

• CHAT_INTENSITY_SHOUT

c The Message Body, defined as a char*.

d The complete function invocation should look something like this:

ChatMsg msg(myRecipID,CHAT_INTENSITY_TALK,myMsg);

3 Send the Chat Message by calling the ZonaServices::sendChatMessage(msg)
function:

m_zona->sendChatMessage(msg);

The Sphere Chat Message has been sent by the Client. Following Server-side validation,
it will be broadcast to the destination Clients and received by them using callback Chat
handlers.

74 CHAPTER 16
Sending Guild Chat

Sending Guild Chat messages is fundamentally similar to sending Sphere Chat messages,
except that the recipient parameter is a Guild Id (that is, an Entity Id that specifies a
Guild). The steps involved in sending a Guild Chat Message are:

1 Instantiate a ZonaServices object:

m_zona = new ZonaServices(true, true);

2 The Character must already be a member of the Guild to which they want to send a
message. Once a member, they must supply a integer corresponding to a Guild Id.
One way is to extract a Guild id from a selected Guild object myGuild and use this
to send a chat message:

ZonaGuildChatMsg* msg =
 new ZonaGuildChatMsg(guildId, recipient_entityId,
 subject, strlen(subject), message, strlen(message));
m_zona->getGameGuildServices()->sendChatMessage(msg);

The Guild Chat Message has been sent by the Client. Following server-side validation, it
will be broadcast to all Clients with membership of the specified Guild and received by
them using callback Chat handlers.

You can derive a Guild id from its name using the ZonaServices::getIdForGuildName()
function.

TERAZONA DEVELOPER GUIDE 75

Receiving Chat
Receiving Chat

Clients receive incoming Sphere Chat Messages by registering a chat handler and creating
a chat callback to receive data from the Terazona servers. To receive the Chat Message
body data, you must extend ChatCallBack::onReceiveChat(ChatMsg* msg)

and register the derived class with ZonaServices to receive Chat updates.

You must additionally set a chat handler within ZonaServices to process this callback
event. There are three specific chat handlers:

The Priority setting indicates that if a Client receives a message that can be processed by a
variety of chat handlers, the message will be processed with the following precedence:

1 Handler for specific Guild / Character.

2 Handler for a specific type of message.

3 The Default Handler.

The code invocation to set a chat handler looks like this:

m_zona->setDefaultChatHandler(*msg);
m_zona->setChatHandler(48087, *msg);

You should immediately copy the msg body into your own local storage because the callbacks
are scoped within the Client-side Entity Object and the CAPI does periodic, scoped cleanup of
old msg objects.

Table 16-5. ZonaServices - Sphere Chat Handlers

ZonaServices Function Priority Description

setChatHandler (int entityId,
ChatCallback &chatCallback)

Highest Associate a Chat Message Handler with a
specific Entity or Guild.

setChatHandler (ChatType type,
ChatCallback& chatCallback)

Medium Associate a Chat Message Handler for a
specific ChatType.

setDefaultChatHandler
(ChatCallback &chatCallback)

Lowest Associate a default Chat Message Handler.

76 CHAPTER 16
Stopping Sphere Chat Monitoring

When a Client no longer wishes to receive incoming chat messages, there are
corresponding ZonaServices functions available to cease monitoring specific Chat
Handlers. This enables you to make available to players “ignore” or “mute” functions.
The functions are:

Table 16-6. ZonaServices - Stop Monitoring Sphere Chat Functions

ZonaServices Function Description

stopMonitorChat (int entityId) Unsubscribe the Chat Message Handler associated
with the specified Entity or Guild.

stopMonitorChat (ChatType type) Unsubscribe the Chat Message Handler for a specific
ChatType.

stopMonitorChatDefault (void) Unsubscribe the default Chat Message Handler.

Guild Chat uses a different monitoring framework.

TERAZONA DEVELOPER GUIDE 77

Managing Guild Objects
Managing Guild Objects

Working with Guilds provides a rich community experience to MMOG players requires
an array of specialized Guild management functions. Guild Management is distributed in
the following classes:

Using the Guild Object

You instantiate a local ZonaGameGuild object that incorporates specific characteristics
defined within the Zona Model file using the ZMUI and all getter and setter functions to
access Guild data and attributes are generated by Zona Modeler during its compile phase.

Zona Modeler enables you to define flexible level or depth of associations between
Entities that can describe virtually any required game design for Character Guilds or
memberships.

Within every Guild object, there are several Guild Attribute values:

Table 16-7. Guild Management Classes

Class Description

ZonaServices Contains Client Guild management functions for
adding, removing Guild members, joining Guilds,
sending Guild messages, Guild monitoring, and so on.

GameGuildCallback Callback that receives Guild activity data from the
Terazona Servers.

ZonaModelerGuild Object Defines the Guild object, enumerates mnemonic Guild
properties, and contains serialization streaming
functions for handling Guild data.

GameGuildServiceInterface Contains functions used for Guild mesaging and
management.

Table 16-8. Enumerated Guild Attributes

Attribute Description

isPersistentMembership Membership information is persisted to database.

isPreloadMemberships The memberships load as soon as the guild load. Should be
turned only for guilds that are expected to have small
memberships.

isPersistentMessage Guild messages are persisted to database.

isMemberInvite Only members can invite.

notifyMembershipUpdate Membership updates are notified to all Guild members.

membersCanPostMsg Members can post messages without Moderator approval.

isSelfInvite Anyone can join the guild.

78 CHAPTER 16
These (and other Guild attributes and data) are accessed using getter/setter functions
auto-generated by Zona Modeler following Guild object definition within the Zona
Model files. These are all the generated getter/setter functions for each developer-defined
Guild objects:

Managing Guilds

Guilds are mainly managed through calls on ZonaServices objects using the
GameGuildServiceInterface and GameGuildCallback.

Table 16-9. Autogenerated Getter Setter Functions For Guild Objects

Function Notes

getGuildId()

setGuildId(int guildId) This is provided for reference purposes and should not
be used by end developers.

getGuildName (int& length)

setGuildName
(char* guildName, int length)

getIsPersistentMembership ()

setIsPersistentMembership
(bool isPersistentMembership)

getIsPersistentMessage ()

setIsPersistentMessage
(bool isPersistentMessage)

getMembersCanPostMsg ()

setMembersCanPostMsg
(bool membersCanPostMsg)

getNotifyMembershipUpdate ()

setNotifyMembershipUpdate
(bool notifyMembershipUpdate)

getIsMemberInvite ()

setIsMemberInvite
(bool isMemberInvite)

getIsSelfInvite ()

setIsSelfInvite
(bool isSelfInvite)

getIsPreloadMemberships ()

setIsPreloadMemberships
(bool isPreloadMemberships)

TERAZONA DEVELOPER GUIDE 79

Managing Guilds
Obtaining a Character’s Guild Memberships

Clients call this function to receive a list of Guilds that their active Character has joined
or can access:

GameGuildServiceInterface::fetchMemberGuilds
 (int entityId, ZonaClientGuildPtrVector& gpv)

Creating a Guild

After you have created a Guild object and populated it with the required attribute data,
you use ZonaServices functions to send Guild management requests across the wire to the
GGS. The steps to create a server-side Guild for in-game propagation are:

1 Instantiate a ZonaServices object and get the Game Guild Service Interface object.

m_zona = new ZonaServices(true, true);
m_zona->getGameGuildServices();

2 Create and populate a local Guild object with attribute data, including name and
membership settings.

SampleGuildClient* aGuild = new SampleGuildClient();
aGuild->setGuildName(gname, gname_len);
aGuild->setIsPersistentMembership
 (cg.isMembershipPersistable);
aGuild->setIsPersistentMessage(cg.isMessagePersistable);
aGuild->setMembersCanPostMsg(cg.membersCanPostMsg);
aGuild->setNotifyMembershipUpdate
 (cg.notifyMembershipUpdate);
aGuild->setIsPreloadMemberships(cg.isPreloadMembership);
aGuild->setIsMemberInvite(cg.isMemberInvite);
aGuild->setIsSelfInvite(cg.isSelfInvite);

3 Publish this Guild object to the GGS:

m_zona->
 getGameGuildServices()->createGuild(aGuild, entityId);

Using Server-side developer-created validation code, the Terazona servers check that this
Character has the necessary permissions to create this Guild and returns success or failure
to the Client. If successfully created, the Guild object’s public data attribute id is set to
the Guild Id (which is the same type as an Entity Id).

The calling Client Character is automatically a Guild member and optionally the Guild
Moderator.

80 CHAPTER 16
Deleting a Guild

Deleting a Guild requires successful Server-side permission validation for success (that is,
closed Guilds can only be deleted by the last Moderator). Clients actively monitoring the
Guild will receive a notification of the Guild deletion through GameGuildCallback.

Managing Guild Activity

Clients receive incoming Guild Activities updates by registering a ZonaServices Guild
update handler, and extending GuildCallback functions to receive Guild update data
from the Terazona servers. Guild activities are directed using Client functions in
ZonaServices, while clients receive notifications of the results of their Guild activities
using the GuildCallback functions.

Ignoring Guild Activity

The function to unregister for Guild updates is:

m_zona->
 getGameGuildServices()->stopMonitorGuildMessage();

TERAZONA DEVELOPER GUIDE 81

Managing Guild Membership
Managing Guild Membership

Sending Guild Invitations

The calling Character must have the necessary permissions to invite other Characters
(with an Entity Id corresponding to the charId) to join the Guild. This is only an
invitation; the receiving Character must call join the Guild to complete the joining
process.

Receiving Guild Invitations

The Character specified by charId receives a notification of their invitation.

Joining Guilds

If the specified Character decides to join the Guild for which they received an invite, then
the Inviter does not receive a specific callback notification if an invited member joins a
Guild. They will receive the same callback as all other Guild members.

Leaving Guilds

Active Characters can decide to leave a Guild, or Moderators can also “kick” other
Characters out of a Guild. The Terazona servers will perform the necessary validation to
ensure that Moderators have the necessary permissions. Moderators cannot kick other
Moderators out of a Guild (or remove their Moderator status which must be voluntarily
relinquished).

Receiving Guild Membership Updates

All Clients can register to receive Guild membership updates. Developers must ensure
that Clients synchronize with Server-side Guild membership update notifications by
manually updating their local Guild objects to maintain correct Guild membership list.

Receiving Guild Moderator Data

All Characters can obtain a list of Moderators for a specific Guild, and can also receive
Guild Moderator updates during gameplay.

82 CHAPTER 16
Moderating Guilds

Active Characters who are Guild Moderators can access extra Moderator-specific
functionality. Server-side validation will invalidate requests from non-Moderators for
access to these functions.

Receiving Guild Message Data

There are many Guild management functions but receiving Guild message content is
relatively simple and uses GameGuildCallback functions.

TERAZONA DEVELOPER GUIDE 83

Demonstrating Guilds
Demonstrating Guilds

This code exmaple demonstrates how to use some of the Guild API functions:

void getGuildMemberInfos(ZonaClientGuild* guild)
{
 ZonaBaseGuildMembershipMap* members =
 guild->getMemberMap();
 int numMembers = members->size();
 if (numMembers == 0) {
 return; // the guild has no member
 }
 char **keys = new char*[numMembers];
 if (keys == NULL) {
 return; // insufficient memory
 }
 members->keySet(keys, &numMembers);
 for (int i = 0; i < numMembers; i++) {
 // keys are
 int memberId = atoi(keys[i]);
 ZonaBaseGuildMembership *member =
 guild->getMember(memberId);
 if (member->getMemberId()) {
 // get an entity id of the member
 }
 if (member->getGuildId()) {
 // the guild id that this member belongs to
 }
 if (member->getIsModerator()) {
 // this member is a moderator
 }
 if (member->isActive()) {
 // this member is on-line now
 }
 }
 if (keys) {
 delete [] keys;
 }
}

84 CHAPTER 16
Managing Persistent Messages

The Persistent Messaging Guild subsystem uses a combination of Guild activities and
Game Database updates to provide in-game email-like functionality.

Fetching Persistent Messages

Terazona provides a special convenience function that enables email-like functionality for
members of Guilds with Persistent Messages and Persistent Membership attributes. Guild
members can call this function after login to receive Guild messages that were sent while
they were logged out or not receiving Guild messages:

GameGuildServiceInterface::fetchChatMessages
 (int guildId, INT64 minDate, INT64 maxDate,
 ZonaGuildChatMsgPtrVector& msgs)=0;

Deleting Persistent Messages

Terazona provides a special convenience function to delete Persistent Messages. The
function is:

ZonaServices::deleteChatMessage
 (ZonaGuildChatMsgPtrVector msgs)=0;

Filtering Chat

Terazona supports content filtering using a word filter file that performs literal
substitution for specified letter sequences, words, and sentence fragments. Filtering can
be done within the GGS, or within Clients, or both. Each filtering mode has both
advantages and disadvantages.

You can control whether the Auditing Server audits Chat messages in pre- or post-filter version
using the Chat filtered=”true|false” configuration setting in zona.xml. See Configuring
the Auditing Server on page 66 of the Terazona Installation and Configuration Guide for details.

TERAZONA DEVELOPER GUIDE 85

Filtering Chat
Understanding Chat Filtering

With Server-side filtering, the word filter file is installed on the GGS. Server-side filtering
has a run-time performance penalty because every Chat message payload is checked
against the list of Server-defined substitutions by the GGS. Server-side filtering is
protected against hacking and snooping, and additionally can reduce outbound Server-
>Client bandwidth slightly by eliminating or reducing undesired chat message payload
before sending it to Clients.

With Client-side filtering, a selected portion of the word filter file is pushed to Clients
during the login process and maintained by the Client during that login sessions. Client-
side filtering distributes the CPU filtering burden among all Clients but the initial
download does add lag time to the login process. One benefit is that Clients-side content
filtering is symmetrical: Clients filter both outgoing and incoming Chat messages.

Filtering the outgoing Client->Server message content can reduce both Server bandwidth
(by potentially eliminating or reducing undesired chat message payload before it ever
reaches the Server) and Server load (by potentially reducing the quantity of messages
requiring substitution).

Server-side content filtering is potentially very CPU-intensive, especially for large lists of
substitution directives. Exercise caution when enlarging the number of Server-side content
filter directives.

86 CHAPTER 16
Writing Chat Filter Directives

The word filter file is parsed from the beginning to the end of the file and uses a simple
syntax with three operators:

The word filter file is deployed on the GGS in this location:

%ZONA_HOME%\config\zona_word_filter.ini

The syntax of a Chat Content Filter Directive is:

input string = output string

• input string indicates the input string to be substituted.

• = is the substitution operator

• output string indicates the output, replacement string

Table 16-10. Word Filter File Operators

Operator Description

[server] Begins the list of words to be Server-side substituted. There
are no modifiers. The GGS will immediately proceed to the
next line of the file.

Unicode character(s) One or more Unicode characters. These form either the input
or the output string. Strings do not have to terminated. White
space does not have to be quoted or delimited.

= The substitution operator. Directs the GGS to finish parsing the
input string and begin parsing the output string.

[client] Begins the list of words to be Client-side substituted. There
are no modifiers. The GGS will immediately proceed to the
next line of the file and push all substitution directives
following the [client] operator to individual Clients during
their login.

newline Newlines (either CR or CR/LF) after the output string indicate
that this substitution directive is complete.

You can perform elimination instead of substitution by placing no characters after the =
operator, using this syntax:

fnord =
This will completely block “fnord” from being seen by Clients.

TERAZONA DEVELOPER GUIDE 87

Demonstrating Chat
This is a sample zona_word_filter.ini file:

[server]
kill=love
[client]
adam lang=slickdaddy
fnord=

Enabling Client-Side Filtering

Client-Side Filtering is automatically activated when there are one or more substitution
directives following the [client] operator. This content is pushed to Clients during
their login process. To enable Client-side content filtering, edit this file:

%ZONA_HOME%\config\zona_word_filter.ini

Client-side content filter directives will be pushed to Clients during their next login.

Disabling Client-Side Filtering

To deactivate Client-side filtering, remove any directives below the [client] operator
from this file:

%ZONA_HOME%\config\zona_word_filter.ini

No Client-side content filter directives will be pushed to Clients during their next login.

Programming Client-Side Filtering

You can activate and de-activate Client-Side filtering during program execution using the
ZonaServices.setFilterOptions(TRUE|FALSE) function.

Demonstrating Chat

Terazona’s Chat architecture is feature-rich. You should examine the Win32 application,
ZChatter, to see how many of these features are used in practice:

%ZONA_HOME%\samples\ZChatter

88 CHAPTER 16

�

�

�

�

�

�

�

Chapter

 17
Understanding Chat Validation • 90

Understanding Chat Message Flow •
91

Implementing the CHATAPI Plugin
• 92

Managing Chat Validation • 93

Understanding the Game Guild
State Process • 95

Filtering Server-Side Chat • 96

Auditing Chat • 97
Server Chat API

The Chat Plugin API (CHATAPI) enables game developers to
validate and filter inter-player communication within Terazona.
You can write your own validation routines and logic for guild
chat messages in a similar manner to how you write code using
the GSAPI to validate game state messages and inter-GSS state
data transfer.
89

90 CHAPTER 17
Understanding Chat Validation

The GGS Chat Plugin is a C dynamic link library (DLL) loaded by the GGS and uses a
model similar to that used by the GSS Plugin. The GGS receives CAPI calls, validates
them against its logic and constraints, and then sends information to the relevant Clients
using CAPI chat callback functions.

The key file for implementing the CHATAPI is ZonaGameGuildValidate.h. This
header file contains all of the calls used by the GGS to handle Chat validation as virtual
functions that you must implement. This file is located here:

%ZONA_HOME%\include\ZonaGameGuildValidate.h

Chat Validation centers around validating Client-initiated Guild management activities.
Guilds are always one of the core features of a successful MMOG and many players form
deep attachment to “their” Guilds. Ensuring that the Guild system performs securely and
maintains system integrity is crucial to customer satisfaction. An arbitrary or illogical
Guild system will produce discontented players.

You implement the functions in ZonaGameGuildValidate.h and use them to create a
robust Guild Activities validation system for your game.

TERAZONA DEVELOPER GUIDE 91

Understanding Chat Message Flow
Understanding Chat Message Flow

The following diagram illustrates the flow of chat messages in Terazona:

Figure 17-1. Terazona Network Message Flow

Game State
Server
(GSS)

GSS Plugin
(GSAPI)

Sphere Chat Msg
(routable & filtered)

Game State
Server
(GSS)

GSS
Message
Broker

Zona Guild Chat Msg
(not-yet-filtered)

Game Guild
Server
(GGS)

Chat Plugin
(CHATAPI)

Sphere Chat Msg
(not-yet-filtered)

Sphere Chat Msg
(filter request)

Sphere Chat Msg
(filter reply)

Game Guild
Server
(GGS)

Zona Guild Chat Msg
(routable & filtered) GSS

Message
Broker

Zona Guild Chat Msg
(routed payload)

Sphere Chat Msg
(routed payload)

Client C

Client-Side Filter

Client A

Client B

Client-Side Filter

Client D

Client-Side Filter

ZonaGuild Chat Msg
(not-yet-filtered)

Sphere Chat Msg
(not-yet-filtered)

92 CHAPTER 17
A Client transmits either a Guild Chat message or a Sphere Chat message. The message is
routed to the GSS Message Broker (GSSMB) associated with the GSS responsible for
managing this Client. The GSSMB routes Guild Chat messages to the GGS for
processing, while Sphere Chat messages get routed to the Client’s GSS.

For Guild Chat messages (distributed according to Character Ids, Guild memberships,
and message flags) the CS validates requested Guild activities and message distribution
using developer-defined CHATAPI functions. If configured to do so, the CS also filters
the Guild Chat messages (a type of Guild object) before sending them back to the
GSSMB for routing.

For Sphere Chat messages (distributed according to Character location, Region coverage,
and Character preferences) the GSS processes the Sphere Chat messages using developer-
defined GSAPI functions. It then requests that the CS perform content filtering (if the
CS has been so configured) before sending the Sphere Chat messages (a type of Game
State Message) back to the GSSMB for routing.

The GSSMB attaches routing information to the messages and hands them off to the
Terazona messaging layer. This subsystem then forwards the messages to the specified
Clients.

Implementing the CHATAPI Plugin

The Chat Plugin should be implemented as a DLL that interfaces with the server through
system defined functions in the ZonaServerPlugin.lib static library. The name of
the resulting DLL should be suitably configured in the zona.xml configuration file. As
well as the GGS, the Game State Servers (GSSs) and the Sphere Server use this file to load
their appropriate libraries at startup. When compiled, the same DLL is installed on all
Terazona servers. The DLL exposes different functionality at runtime depending on
which server it’s running on.

For example, the TileTest demo application provided with the release uses a plugin DLL
called TileTest_ServerPlugIn.dll.

TERAZONA DEVELOPER GUIDE 93

Managing Chat Validation
The corresponding entry in the zona.xml file is:

...
<ClusterCommon>
 <LibName authDynamicLibName="AuthSamplePlugin.dll"
 cryptoDynamicLibName="ZonaCrypto"

processDynamicLibName="TileTest_ServerPlugIn"/>
...
</ClusterCommon>

Compiling the CHATAPI Plugin

For details of how to compile and test the CHATAPI Plugin, please see Compiling the
GSAPI Plugin and CAPI Executable on page 110 and Debugging the GSAPI Plugin on page
112.

Managing Chat Validation

Client-initiated Guild management calls trigger validation routines in the GGS. The
results of this validation are sent back to the calling Client and to other subscribed
Clients by the GuildCallback mechanism (see Managing Guild Membership on page 81).

Analyzing the Chat Validation Functions

There are many Chat validation functions (all related to Guild activity):

bool onValidateCreateGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when an entity attempts to create a game guild.

bool onValidateDeleteGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when an entity attempts to delete a game guild.

bool onValidateLoadGameGuild (ZonaServerGuild* guild)

 Called when a guild is loaded into the GSS.

bool onValidateInviteMember
 (ZonaServerGuild* guild, int inviterId, int inviteeId)

 Called when a member tries to invite another entity to join the guild.

94 CHAPTER 17
bool onValidateKickMember (ZonaServerGuild *guild, int
memberId, int targetId)

 Called when a member tries to kick another member out of the guild.

bool onValidateAddGameGuildModerator
 (ZonaServerGuild* guild, int memberId, int moderatorId)

 Called when a member attempts to add a moderator to the guild.

bool onValidateRemoveGameGuildModerator
 (ZonaServerGuild* guild, int moderatorId)

 Called when a member attempts to remove a moderator from the guild.

bool onValidateJoinGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when an entity attempts to join a guild.

bool onValidateLeaveGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when a member attempts to leave a guild.

bool onValidateEnterGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when a member attempts to enter a guild.

bool onValidateExitGameGuild
 (ZonaServerGuild* guild, int entityId)

 Called when a member attempts to exits a guild.

bool onValidateGameGuildGameState
 (ZonaServerGuild* guild, int entityId,
 char* stateData, int stateLength)

 Called when a member sends a game state to the guild.

bool onValidateGameGuildChat (ZonaServerGuild *guild,
int entityId, char *chatSubject, int subjectLength, char
*chatBody, int bodyLength)

 Called when a member sends a chat message to the guild.

TERAZONA DEVELOPER GUIDE 95

Understanding the Game Guild State Process
bool onValidateGameGuildEntityPropertyUpdate
 (ZonaServerGuild* guild, ZonaServerEntity* entity,
 ZonaServerEntity* previousEntity)

 Called when a member sends an entity Update to the guild.

Understanding the Game Guild State Process

This is the Game Guild State Process:

State – Part of Guild

The Membership object created and the Member is allowed to enter Guild.

State – Active in Guild

All Members can send and receive Guild messages.

State – Inactive in Guild

Members can no longer can send or receive messages.

State – Not Part of Guild

The associated Membership object gets deleted.

Figure 17-2. Game Guild State Process

Part
Of

Guild

InActive
In

Guild

Active
In

Guild

Not Part
Of

Guild

joinGuild(…)

enterGuild(…)

exitGuild(…)

enterGuild(…)

leaveGuild(…)

leaveGuild(…)

leaveGuild(…)

96 CHAPTER 17
Validating Guild Creation

The ZonaGameGuildValidate::onValidateCreateGameGuild() function is
called in response to a Client GameGuildServiceInterface::createGuild()
function call.

Within your implementation of the onValidateCreateGameGuild() function you
can check whether the calling active Character has sufficient permissions and eligibility to
create the requested type of Guild.

There is no direct GameGuildCallback function but the calling Client will receive a
return value indicating success or failure at creation.

Filtering Server-Side Chat

As described in Filtering Chat on page 84, server-side chat content filtering is possible but
has significant performance characteristics. For configuration and syntax instructions,
please see Writing Chat Filter Directives on page 86.

TERAZONA DEVELOPER GUIDE 97

Auditing Chat
Auditing Chat

Auditing Chat requires no coding but is controlled through a combination of
configuration and database management. The GGS writes its Chat audit data directly
into the Audit Database with little intervention from a development viewpoint. For
further details on auditing chat, please see Auditing Chat Messages on page 69 and
Auditing Guild Activities on page 69 of the Terazona Installation and Configuration Guide.

You can control whether the Auditing Server audits Chat messages in pre- or post-filter version
using the Chat filtered=”true|false” configuration setting in zona.xml. See Configuring
the Auditing Server on page 66 of the Terazona Installation and Configuration Guide for details.

98 CHAPTER 17

�

Chapter

 18
Making Fault Tolerance and Failover
Transparent • 100
Failover & Fault Tolerance

This chapter explains how Terazona transparently handles
failover and creates a fault-tolerant environment.
99

100 CHAPTER 18
Making Fault Tolerance and Failover Transparent

The Terazona system provides a transparent fault tolerant failover mechanism between
the Game State Servers in order to allow for continuous game play. Developers need only
be concerned with the failover from a conceptual level - Terazona invisibly handles the
required infrastructure.

Upon the failure of a GSS (or a message broker) to which a Client was connected, each of
the affected game Clients, including the NPC Server, will reconnect to a different GSS.
The reconnect process is similar to the login process, where the Clients first request the
Dispatcher for the least-loaded GSS. The Clients will then reconnect to this new GSS.
The new GSS first attempts to retrieve a replica of the Client’s state information. If this
replica is unavailable, then the new GSS retrieves the Client state from the database.

As well as this reconnection, the Sphere Server transfers all the failed GSS’s Region
Ownerships to other available GSSs. No special coding is required by the developer to
handle server failures.

�

Chapter

 19
Configuring the Cheat Prevention
Interface • 102
Cheat Prevention

This chapter describes how Terazona enables developers to
prevent cheating with MMOGs.
101

102 CHAPTER 19
Configuring the Cheat Prevention Interface

Terazona also provides a complete cheat prevention interface. This is done through the
validation calls on the GSAPI side. The user may add new validation code to the GSAPI
on the GSS and start up the new GSS within the cluster in order to add the new
validation code. We do have some of the more common cheats already validated directly
by the GSS.

The cheat prevention parameters can be set in the zona.xml file under the
ZONA_HOME\config entry:

ZonaProperties
 Clusters
 Cluster
 GssServers
 GssServersCommon
 <CheatPrevention gsRateCheckFreq="10"
 gsUpdateQueSize="100"
 maxGSUpdateRate="0"/>

So under the above configuration based on maxGSUpdateRate a user can send in 15
game state updates per second. If this value is set to 0 then cheat detection is turned off.

• gsUpdateQueSize is number of messages the average updates per second is
calculated

• gsRateCheckFreq is the frequency at which this check is made that is, a value of 10
will check one out of every ten game state packets.

�

Chapter

 20
Analyzing Game State Records • 104
Game State Records

This chapter describes how Terazona enables rapid yet validated
communication between game objects using a special memory
structure called a Game State Record (GSR).
103

104 CHAPTER 20
Analyzing Game State Records

Game State Records form the interface between the GSAPI and the GSS. They utilize an
efficient shared memory model to rapidly exchange data between the GSS and the
developer’s GSAPI plugin.

The GSS and the GSAPI exchange information with the help of game state records
(GSR). A GSR is a structure mapped into shared memory, which is accessed by both the
GSS and the GSAPI library. This mechanism avoids costly memory allocations and
memory copies.

One complication of this technique is that Clients must use the unstructured message
publishing calls, such as sendGameStateMsg() and onReceivedGameStateMsg().

The server passes the game state to the GSAPI in the form of a GSR. The GSAPI can
access the most recent GSR with the help of the getCurrentGameStateRecord()
function. This record is updated with changes in Region information for the entity in
question.

If new entity state records need to be published, a call to getNewGameStateRecord()
returns a reference to a new Game State Record mapped in shared memory. The structure
is then populated accordingly.

 The GSR structure is described as follows:

struct GameStateRecord
{
 int recordType; // This value should never be modified
 int entityId; // The entity id for corresponding
 // to state update
 int entityRegionId; // The Region id of the above entity
 int stateDataOffset; // The offset for
 // reading & writing state data
 // This value should never be modified
 int operation; // The operation (bit combinations)
 // for this state
 int stateDataLen; // The length of the state data
 //to be published
// This value should not be modified if it has been
// obtained by a call to getCurrentStateRecord
}

TERAZONA DEVELOPER GUIDE 105

Analyzing Game State Records
The function descriptions are below:

1 GameStateRecord* getCurrentGameStateRecord()

• Return: reference to the most recent game state record sent by the Client

• Returns a reference to the most recent GSR. The GSR can be populated with
updates to the entity’s Region information.

2 GameStateRecord* createNewGameStateRecord
 (short length, byte* entityDataPtr)

• Return: reference to a new GSR.

• Returns a reference to new empty GSR. The GSR can be populated appropriately.

• The length field indicates the size of the gamestate to be published.

• The entityDataPtr reference is set to point to the first byte of the free memory
block of size indicated by length.

• This function is mostly called when the GSAPI has to generate and publish new
state information to the clients.

• A new flag called PUB_OP_CLIENT_PRIVATE has been introduced in the operation
field to indicate publishGameStateTo functionality.

• The only difference between the two functions is, that the operation field for the
publishGameStateTo function is Bitwise OR’d with the new PUB_OP_DIRECT
flag.

A GSR obtained by a call to getCurrentGameStateRecord() should only have

modifications to the entityRegionId, RegionCoverage and operation fields.
The rest of the fields are cross-referenced by the Server in the course of its processing and
should not be modified.

Upon returning from any JNI call, the Server flushes the shared memory and all references to it
are invalidated. Therefore the memory is valid only in the context of that particular function call.

106 CHAPTER 20

�

�

�

�

�

�

�

�

Part

 III
Chapter 21 • 109
Development Environment

Chapter 22 • 117
Introducing Zona Modeler

Chapter 23 • 127
Introducing the Zona Modeler
UI

Chapter 25 • 169
Simple Client Creation

Chapter 26 • 179
Managing Players Using The
Server

Chapter 27 • 185
Managing Characters Using
The Server

Chapter 24 • 159
Character Entity Object

Chapter 28 • 191
Developing With Terazona

This part of the Terazona Developer Guide analyzes some of the
client-server interactions within Terazona and demonstrates
how to develop some simple applications.
107

Simple Client-Server Demo
Creation

�

�

�

�

�

�

Chapter

 21
Compiling the GSAPI Plugin and
CAPI Executable • 110

Debugging the GSAPI Plugin • 112

Setting up VC++ • 113

Testing the Client • 115

Changing the Development
Options • 116

Starting the Client • 116
Development Environment

This chapter describes how to set up a typical Terazona
development environment.
109

110 CHAPTER 21
Compiling the GSAPI Plugin and CAPI Executable

The CAPI can be built as an executable .EXE.

The GSAPI Plugin must be built as a dynamic library. It must be linked with the
ZonaServerPlugin.lib static library. The dynamic library uses the functions defined
within the ZonaServerPlugin.lib library to interface with the GSS.

There are various header file containing the function declarations, which have to be
implemented by the developer:

ZonaBaseEntity.h
ZonaCharacterValidate.h
ZonaChatGuildValidate.h
ZonaEntityValidate.h
ZonaGameGuildValidate.h
ZonaGameStateValidate.h
ZonaRegionValidate.h
ZonaServerCharacter.h
ZonaServerEntity.h
ZonaSystem.h
ZonaTimerEvents.h

• ZonaGSPublish.h is a header file containing the various functions, declarations,
Entity state updates, and Timer functions. These are pre-defined and do not require
implementation.

To compile the GSAPI, using Microsoft Visual C++:

Include the header(.h) files from:

%ZONA_HOME%\include

For both Client executables (CAPI) and Server Plugins (GSAPI), ensure you also include
the header(.h) files from:

%ZONA_HOME%\include\ZonaModeler

Project -> Settings... -> C++ -> Category: Preprocessor

Under “Additional Include Directories” add:

%ZONA_HOME%\include
%ZONA_HOME%\include\ZonaModeler

Project -> Settings... -> C++ ->Category: Code Generation

Ensure the runtime library for debug is “debug multithreaded” and for release is
“multithreaded”

TERAZONA DEVELOPER GUIDE 111

Compiling the GSAPI Plugin and CAPI Executable
Project -> Settings... -> Link->Category:Input

Under Object->Library Modules, you need to enter Terazona-specific targets for linking:

All Configurations:
$(ZONA_HOME)\lib\ZonaServerPlugin.lib

112 CHAPTER 21
Debugging the GSAPI Plugin

Because the GSAPI Plugin is either a Windows DLL or a shared library, you can't simply
debug it from your debugger. This section introduces two ways to debug using the
Windows platform. You can choose one of them to meet your need.

Using DebugBreak()

The DebugBreak function causes a breakpoint exception to occur in the current process.
See the details in:

http://msdn.microsoft.com/library/default.asp
 ?url=/library/en-us/debug/base/debugbreakop

When the exception is thrown, you will see the Window Error Report pop-up that allows
you to starts VC++ and debug.

Here is the step-by-step instruction for TileTest:

1 Insert DebugBreak(); before the line where you want to debug.

2 Build TileTest_ServerPlugIn in the debug mode, which will produce the debug
version DLL in ZonaHome\bin.

3 Configure the server to load the debug version by changing the following entry in
$ZonaHome\config\zona.xml:

• pluginDynamicLibName="ZonaBattle_ServerPlugIn"

4 Start Sphere Server or GSS as usual.

5 When you come to the point where you put DebugBreak(), you will see the
Windows Error Report screen pop-up, click on the Debug button which will start
VC++ with the disassembly and your C++ GSAPI code running in debugger.

6 Hit F10 to advance to the next line corresponding to the C++ source code, and switch
to the C++ view window.

7 You should be able to set breakpoints, inspect variables, if needed.

http://msdn.microsoft.com/library/default.asp

TERAZONA DEVELOPER GUIDE 113

Setting up VC++
Setting up VC++

You can set up VC++ to debug the GSAPI. Setting VC++ is not as simple as inserting
DebugBreak(). But, once you set it up, you can start GSS from VC++ and set
breakpoints in the same way as you set them into a standalone program.

Here is the step-by-step instruction for TileTest:

1 Configure the server to load the debug version by changing the following entry in

%ZONA_HOME%\config\zona.xml:

• pluginDynamicLibName="TileTest_ServerPlugIn"

2 Build TileTest_ServerPlugIn in the debug mode, which will produce the debug
version DLL in $ZonaHome\bin.

3 Go to the Project->Settings->Debug window.

4 In the “Executable for debug session:”, set up to invoke java.exe.

C:\$JAVAHOME\bin\java.exe

114 CHAPTER 21
5 In the “Program arguments”, supply all the info that java.exe needs to run GSS.

-cp
.;c:\Zona\Server1.4.1\lib\zona_server.jar;c:\Zona\Serv
er1.4.1\lib\zona_client.jar;c:\Zona\Server1.4.1\utils\
lib\imq.jar;c:\Zona\Server1.4.1\utils\lib\jndi.jar;c:\
Zona\Server1.4.1\utils\lib\jms.jar;c:\Zona\Server1.4.1
\utils\lib\fscontext.jar;c:\Zona\Server1.4.1\utils\lib
\icejms.jar;c:\Zona\Server1.4.1\utils\lib\msbase.jar;c
:\Zona\Server1.4.1\utils\lib\msutil.jar;c:\Zona\Server
1.4.1\utils\lib\mssqlserver.jar;c:\Zona\Server1.4.1\ut
ils\lib\jdbcpool-
0.99.jar;c:\Zona\Server1.4.1\utils\lib\tinySQL.jar;c:\
Zona\Server1.4.1\utils\lib\db-ojb-
1.0.rc3.jar;c:\Zona\Server1.4.1\utils\lib\commons-
pool.jar;c:\Zona\Server1.4.1\utils\lib\commons-
collections-
2.0.jar;c:\Zona\Server1.4.1\utils\lib\commons-lang-
1.0-mod.jar;c:\Zona\Server1.4.1\utils\lib\commons-
dbcp.jar;c:\Zona\Server1.4.1\utils\lib\xmlParserAPIs.j
ar;c:\Zona\Server1.4.1\utils\lib\xercesImpl.jar;c:\Zon
a\Server1.4.1\utils\lib\xml-
apis.jar;c:\Zona\Server1.4.1\utils\lib\xalan.jar;;c:\Z
ona\Server1.4.1\utils\lib\WkJavaApi.jar;c:\Zona\Server
1.4.1\ext\classes;c:\Zona\Server1.4.1\ext\ojb;c:\Zona\
Server1.4.1\ext\metadata;c:\Zona\Server1.4.1\ext\class
es -Dzona.dev= -Dzona.home=c:\Zona\Server1.4.1

6 Set breakpoints and debug as usual.

TERAZONA DEVELOPER GUIDE 115

Testing the Client
Testing the Client

Configuring the XML File

The XML File must be configured to point the various servers at the proper location of
the all of the necessary servers as well as their configurations. The setup and configuration
for Terazona is controlled by a single XML file:

%zona_home%\zona.xml

The configuration is split into two parts:

1 System Configuration

2 Cluster configuration

The System branch controls configuration values that are good for the entire system.

The Cluster branch has common areas for the clusters, and each type of server.

The Installer modifies the critical items in the zona.xml file during the install process. If
you wish to change these values after install, you must edit the this file. In the next major
release of Terazona. Terazona will support the Terazona Cluster Editor (“Clusternator”)
that will enable modification and management of XML files across the cluster from one
central screen.

For now, these are the critical values in the zona.xml file that developers can modify:

ZonaProperties/Clusters/Cluster/ClusterCommon/Profile/
database@serverURL= database URL

that is,

jdbc:microsoft:sqlserver://
zonafile:1433;DatabaseName=ZonaDB;SelectMethod=cursor

ZonaProperties/Clusters/Cluster/ClusterCommon/Profile/
database@userName= [database username]
ZonaProperties/Clusters/Cluster/ClusterCommon/Profile/
database@password= [Database password]

If the Server locations change, you should use the Installer to reinstall and reconfigure
that the zona.xml file.

sqlserver://

116 CHAPTER 21
Changing the Development Options

To develop your own applications or control which Plugin gets loaded by the Server, you
should change this value:

pluginDynamicLibName="ZonaBattle_ServerPlugIn"

Change ZonaBattle_ServerPlugIn, to the name of your compiled DLL. This will
change the name of the main Server plugin.

Starting the Client

For initial tests of the client, it is probably best to start without the NPC Server. This will
facilitate ease of use and a simpler debugging path. Run the following servers from the
Start Menu in the Start > Programs > Terazona Server 1.4.1 location in the order
below.

1 Servers > Authentication server

2 Servers > Messaging server

3 Servers > ZAC server

4 Servers > Dispatcher server

5 Servers > Sphere server

6 Servers > Game State Server

7 Servers > Game Guild Server

Initial tests should also start with only a single GSS to simplify the debugging process.

�

�

�

�

Chapter

 22
Introducing Zona Modeler • 118

Using Zona Modeler • 121

Understanding Zona Modeler Input
and Output • 122

Deploying Zona Modeler Objects •
125
Introducing Zona Modeler

This chapter explains how and why Zona Modeler (ZM) exists
and how it integrates within Terazona. ZM facilitates the rapid
creation and modification of bandwidth-optimized game
objects within networked game architectures. ZM auto-
generates Java and C++ code for easy Client- and Server-side
integration and deployment.
117

118 CHAPTER 22
Introducing Zona Modeler

Zona Modeler (ZM) is a game object design suite that provides an environment and a set
of tools that enables developers to prototype, create, and edit persistable Game Objects
and bandwidth-optimized game state messages. Zona Modeler enables game developers
and game designers to create, modify, and compile network game objects (NGOs) using a
simple XML-based definition format.

Zona Modeler is focused on the creation, modification, and persistence of network
objects. Terazona games typically execute across large, possibly heterogeneous game server
clusters. A key component of any such distributed system is describing an efficient
method of communicating object state changes between different machines in the cluster
and persisting these state changes to a database.

This process of sending object states and object state changes between execution
machines across the "wire" (or network layer) within a distributed system is called
marshalling (for sending) and unmarshalling (for receiving). This is similar to the concept
of serialization.

Within distributed systems, to perform marshalling and unmarshalling each execution
machine requires various meta-object support data commonly known as interfaces,
skeletons, and stubs. Zona Modeler creates these for you during design-time.

Because ZM also provides a bi-directional mapping between Game Objects and database
objects, developers can use industry-standard RDBMS to store and serve Game Objects.
Game applications (and game application components) can be made database-aware and
utilize database and web services to enhance interoperability and cross-platform
deployment. This persistence layer supports fail-over and is fault-tolerant.

Zona Modeler’s Components

In terms of component view, Zona Modeler consists of two major components.

a Zona Modeler Design Studio

Engage developer in designing the game object model and also audit object model for
that game object model

1 ZM UI – a pure Java IDE to enable freeform game object design.

2 ZM Processor – process UI-generated game object models and generates object-
relational mappings and C++ or Java sources for Clients, Servers, and Audit Servers.

3 ZM Deployer – Deploys the custom game schema, table, and game data to the
Game and Audit Database, compiles the generated server components and prepares
metadata base for runtime usage.

b Zona Modeler Runtime framework

TERAZONA DEVELOPER GUIDE 119

Introducing Zona Modeler
This framework sits beneath the Zona Application Framework (ZAF) and provides
runtime functionalities such as persistence, custom bandwidth optimized messaging for
generated ZM game objects.

Understanding the Zona Modeler Architecture

A Terazona application can now be represented by a 3-level architecture. The base level,
ZMO, handles network game objects and is transparent to game developers and game
designers. Terazona developers interact primarily with the middle layer, ZAF, that handles
in-game object execution and management. The final layer, GDO, transparently handles
in-game object instantiation.

Each data object layer talks to an associated layer-specific Controller object that provides
the following services:

1 Object-Relational Mapping

2 Messaging

3 Validation

Zona Modeler abstracts the network game object layer below the Zona Application
Framework (ZAF) game execution layer. To manipulate ZAF, you use the standard C++
or Java CAPI and GSAPI functions. Using the 3-layer model, the new Terazona class
hierarchy looks like this:.

Figure 22-1. Terazona Application Architecture

ZMO
Zona Modeler Objects

ZAF
Zona Application Framework

GDO
Game Data Objects

Terazona Application Architecture

120 CHAPTER 22
Zona Modeler defines and manages the object substructure of a Terazona-based
environment. This Zona Modeler Object (ZMO) layer sits beneath the Zona Application
Framework (ZAF) layer with which you interact using the Client and Server APIs. ZM
auto-generates all the run-time classes and initialization data, as well as providing object-
relational persistence mapping.

At run-time, the interaction between the ZMO and the ZAF objects instantiates the
Game Data Object layer, that is, the visible executing Terazona “game world”. During
game execution, the game object Entity state changes are persisted to the GameDB or the
AuditDB.

Examining Zona Models

Zona Modeler objects are stored in an XML-based model file. Within this model there
are several components:

Within the ZMUI, you can create and edit NGOs, add or adjust their attributes, and
save your progress in an XML-based model file. Every model file references a Zona
Modeler configuration file that contains your schema and database access information.

When you want to compile the NGOs into in-game objects, ZMUI automates this
conversion of the model file NGOs into in-game binary objects, creating database
schema, server-side Java class files, static runtime support files, and C++ and Java Client-
specific source code suitable for inclusion within your developed Clients.

Table 22-1. Zona Modeler Components

Attribute Description

Model This is the root node that with an
attribute that specifies the name of the
model file. In effect, this is the name of
your game.

Character Entity This element node represents
Character Entities.

Child Entity This element node represents Child
Entities.

Guild Entity This element node represents Game
Guild Entities.

Config File This is a reference to an external
configuration file that contains
database access parameters. It is
stored as an attribute parameter value
within the <objectmodel ... />
element.

TERAZONA DEVELOPER GUIDE 121

Using Zona Modeler
During its compilation, Zona Modeler creates and embeds ClassIDs within the generated
source code that function as persistent object references. You can define ClassIDs for
certain classes of objects within the Zona Modeler UI, and these ClassIDs are persisted
within the XML-based model file. The ZM code generator takes the ClassIDs from the
model file and embeds them within its run-time metadata output. You can use this
ClassID during run-time to reference Zone Modeler objects.

The default Terazona installation creates a single configuration file that all model files
reference:

%ZONA_HOME%\config\ZonaModelerConfig.xml (Windows)
$ZONA_HOME/config/ZonaModelerConfig.xml (Linux)

Using Zona Modeler

There are three stages to using Zona Modeler:

You do not have to use a single modeler configuration file for all your models. If different
models require access to different databases, or or you want to use different access
credentials, then you can create and attach different modeler configuration files to any or all of
your Zona Models.

Table 22-2. Zona Modeler Stages

Stage Description

Design Time During this stage you interactively
create and modify Zona Models. When
you are satisfied with your design, you
compile (“Run”) your model. Zona
Modeler produces various output files
and classes.

Deployment During this stage you deploy the Zona
Modeler output objects across your
Terazona cluster. You also link some
Zona Modeler output files with your
Client application compiles to produce
Zona Modeler-aware executables.

Run Time During run-time the Zona Modeler-
aware Client executables and the
Server-side deployed Zona Modeler
classes communicate transparently.

122 CHAPTER 22
Starting Zona Modeler UI

To invoke the Zona Modeler UI, on Windows you can use Start > All Programs >
Terazona Servers X.X.X > Zona Modeler icon. This invokes a Java UI within which you
use Zona Modeler.

The line command to load the Zona Modeler UI (ZMUI) is

%ZONA_HOME%\ZonaHome\bin\startZonaModeler.bat (Windows)
$ZONA_HOME/ZonaHome/bin/startZonaModeler (Linux)

Understanding Zona Modeler Input and Output

Zona Modeler takes in three inputs (termed D, C, and CA), and produces a set of run-
time metadata and classes that produce Server-, Client, and Audit-specific object
instantiations during run-time.

Examining the Zona Modeler Inputs

Zona Modeler takes in three inputs. These are:

1 Zona Model Object Definition Schema - This is the XML-based model file created
using the ZMUI. This file contains element and attribute definitions as well as some
external information. This input object is referred to as D.

In the demo TrackerClient, for example, this object is stored in the file:

%ZONA_HOME%\samples\TrackerClient\TrackerSchema.xml
 (Windows)
$ZONA_HOME/samples/TrackerClient/TrackerSchema.xml
 (Linux)

2 Zona Model Configuration - This is the XML-based environment configuration file
for the Zona Modeler network data objects. This contains information such as the
working directory and the database location for Zona Modeler objects (ZonaDB).
Note that although they can be located within the same database server, the ZonaDB
and the Game DB can be hosted on different machines. This input is referred to as C.

Although it's possible to specify multiple database configurations for different Zona
Modeler projects, the default Terazona installation uses a single file:

%ZONA_HOME%\config\ZonaModelerConfig.xml (Windows)
$ZONA_HOME/config/ZonaModelerConfig.xml (Linux)

3 Audit Model Configuration - This is the XML-based environment configuration file
for the audited Zona Modeler network data objects. This contains information such as
the working directory and the database location for audited Zona Modeler objects
(AuditDB). Note that although they can be located within the same database server,

TERAZONA DEVELOPER GUIDE 123

Understanding Zona Modeler Input and Output
the ZonaDB, the Game DB, and the AuditDB can be hosted on different machines.
This input is referred to as CA.

Examining the Zona Modeler Outputs

During its compile phase, Zona Modeler combines all three inputs to derive specific
object representations suitable for deployment across Terazona. Specifically, Zona
Modeler outputs C++ and Java code definitions for three Data Objects:

1 DS - This is the server-side view of the D data object. This will encapsulate the
System, Public, and Private Properties of specific data object instances.

2 DC - This is the client-side view of the D data object. This will encapsulate the Public,
and Private Properties of specific data object instances.

3 DA - This is the audit view of the D data object. This will encapsulate those System,
Public, and Private Properties of specific data object instances designated for auditing
within CA.

Zona Modeler also produces associated support and definition files. These are:

1 A compiled version of DS, for deployment across all Game State Servers (GSSs).

2 A SQL definition required for Terazona data object persistence. This is called DSQL.

3 A database-specific schema version of DSQL. You can chose the database within the
Zona Modeler UI.

4 An XML-based MetaData file that contains the static data necessary to instantiate
objects, for deployment across all GSSs.

5 An XML-based ObJectRelationalBridge (OJB) file that describes the object-relational
persistence mappings that link Zona Modeler objects with specific database columns.

Zona Modeler does not compile the C++ versions of DS, DC, or DA. During Client
development, or as desired, you can use your C++ compiler of choice to compile these
objects..

124 CHAPTER 22
6 This diagram illustrates the Zona Modeler inputs and outputs:

Following successful execution of the Zona Modeler compile process, the following
directory contains all of the ZM output files, including DS, DC, and DA class files and
metadata information required for runtime:

%ZONA_HOME%\ext (Windows)
$ZONA_HOME/ext (Linux)

Figure 22-2. Zona Modeler Inputs & Outputs

D
data object

C
ZonaDB
config

CA
AuditDB
config

} Zona Modeler Compiler

DS
compiled

server data
object
(class)

ZM Object
Database
Schema

DSQL
ZM Object

(SQL)

DS
server data
object code

(Java)

DC
client data

object code
(Java)

DA
audit data

object code
(Java)

MetaData
(XML)

OJB
Repository

(XML)

TERAZONA DEVELOPER GUIDE 125

Deploying Zona Modeler Objects
The ZM output is stored in subdirectories as follows:

Deploying Zona Modeler Objects

Zona Modeler deployment differs depending on whether you are deploying on the
Server-side Terazona cluster, (Java classes and C++ source) or compiling into the Client-
side executable (C++ source).

Deploying the Server-Side Zona Modeler Output

1 Deploy the contents of the \ext directory onto all servers within the Terazona cluster
as follows:

%ZONA_HOME%\ext (Windows)
$ZONA_HOME/ext (Linux)

2 Ensure that the \ext directory is referenced within each server's Java CLASSPATH.

3 Build your Server plugin incorporating the generated C++ code (.h and .cpp) from:

a %ZONA_HOME%\ext\src\cpp\server (Windows)

$ZONA_HOME/ext/src/cpp/server (Linux)

b %ZONA_HOME%\ext\src\cpp\common (Windows)

$ZONA_HOME/ext/src/cpp/common (Linux)

Table 22-3. Zona Modeler Output Object Locations

\ext Subdirectories Description

classes Run-time server-side Java classes

metadata Run-time object instantiation information

ojb Run-time object-relational mapping information

src Object source code (C++, Java).Relational table code (SQL)

debug First-time ZM model initialization data stored as compressed
archives. Useful for debugging and support.

126 CHAPTER 22
Compiling the Client-Side Zona Modeler Output

1 Build your Client executable incorporating the generated C++ code (.h and .cpp)
from:

a %ZONA_HOME%\ext\src\cpp\client (Windows)

$ZONA_HOME/ext/src/cpp/client (Linux)

b %ZONA_HOME%\ext\src\cpp\common (Windows)

$ZONA_HOME/ext/src/cpp/common (Linux)

During compile-time, the metadata and object-relational data is stored within your
executable. As a result, these files do not require separate client-side deployment.

Using the Zona Modeler Class IDs

The Class Id created within each model is unique for each generated class and remains
invariant for each Entity through subsequent ZonaModeler runs. As a result, you can use
the Class Ids to downcast from ZonaClientEntity or ZonaServerEntity to your
developer-defined Entities.

Refer to ClassId.h generated within $ProjectRoot/modeler/common:

onNotifyEntityJoinedSphere(ZonaClientEntity* zce) {
 switch (zce->getClassId()) {
 case …
 case ClassId_MyCharacter:
 ch = (MyCharacter*)zce;
 break;
 case …
 }
}

�

�

�

�

�

�

Chapter

 23
Introducing the Zona Modeler UI •
128

Using the Zona Modeler UI • 128

Using the Model File • 130

Creating Model Entities • 140

Designing Model Entities • 142

Compiling Model Entities • 155
Introducing the Zona

Modeler UI

This chapter illustrates how to use the Zona Modeler UI
(ZMUI) to graphically create and modify Characters, Child
Entities, and Game Guilds into “Game” or model files. Within
ZMUI you can also compile these models to generate cross-
platform client and server network game objects suitable for
deployment and run-time execution.
127

128 CHAPTER 23
Introducing the Zona Modeler UI

The Zona Modeler UI (ZMUI) enables game developers and game designers to create,
modify, and compile network game objects (NGOs) using a simple graphical interface.
Within the ZMUI, you can create and edit NGOs, add or adjust their attributes, and
save your progress in an XML-based model file. When you want to compile the NGOs
into in-game objects, ZMUI automates this conversion of the model file NGOs into in-
game binary objects, creating database schema, server-side Java class files, static runtime
support files, and C++ and Java Client-specific source code suitable for inclusion within
your developed Clients.

Within ZMUI, you create model files that define your NGOs. Every model file
references a Zona Modeler configuration file that contains your schema and database
access information. The default Terazona installation creates a single configuration file
that all model files reference:

%ZONA_HOME%\config\ZonaModelerConfig.xml (Windows)
$ZONA_HOME/config/ZonaModelerConfig.xml (Linux)

Using the Zona Modeler UI

To invoke the Zona Modeler UI, on Windows you can use Start > All Programs >
Terazona Servers X.X.X > Zona Modeler icon.

The line command to load the Zona Modeler UI is:

You do not have to use a single modeler configuration file for all your models. If different
models require access to different databases, or or you want to use different access
credentials, then you can create and attach different modeler configuration files to any or all of
your Zona Models.

TERAZONA DEVELOPER GUIDE 129

Using the Zona Modeler UI
%ZONA_HOME\bin\startZonaModeler.bat (Windows)
%ZONA_HOME/bin/startZonaModeler (Linux)

When you invoke Zona Modeler, the Java-based Zona Modeler UI displays:

These are the main ZMUI components:

Figure 23-1. Zona Modeler - Initial Load Screen

Table 23-1. ZMUI Main Panel Components

Component Description

Menu Bar Displays on top of the UI, within the File object. Click the File
object to reveal several sub-components:
File > Configure...

File > Open

File > Save

File > Save As...

File > Run

File > Exit

Object Tree Displays within the top-left panel of the UI. Presents a
graphical view of your model file, enabling you to traverse the
element hierarchy and click specific elements for selection,
modification, or deletion. The object tree always begins with
a single root node with the default name Model.

130 CHAPTER 23
Using the ZM UI Console

The lower panel, Console, displays the status of your activities within ZMUI, and also
displays warning and error messages. All activities for a current model display within the
Console and can be copied into a clipboard for reference or debugging purposes.
Opening a new model or running a Zona Modeler compile clears the console and begins
writing a new set or activity messages within the Console.

Using the Model File

The ZMUI creates and modifies an XML-based model file that persists your changes.
The Zona Modeler compiler parses this model file to produce its output.

Saving Your Model File

Save early, save often. To save your model file from within ZMUI:

Object Inspector Displays within the top-right panel of the UI. The display is
context-sensitive and updates to reflect whichever object you
have selected within the Object Tree panel (top-left). Some
properties are ghosted and non-editable because they have
been auto-generated by Zona Modeler. Non-ghosted
properties are editable.

Comments Used to add user-defined text comments for selected Entities
or Properties. These comments do not affect the game logic.

Console Displays on the bottom half of the ZMUI and displays status
updates, console messages, and command output.

Table 23-1. ZMUI Main Panel Components

Component Description

TERAZONA DEVELOPER GUIDE 131

Using the Model File
1 Select File > Save...

2 Type a name for your on-disk model file.

3 Click the Save button.

4 Your change to the model name has been saved.

Configuring Your Model File

ZMUI initially creates a blank model file. There are two primary configuration
attributes:

Figure 23-2. Zona Modeler - Save Model Selected

If your model contains only a root node, then ZMUI displays a “Model is Empty” Alert and
blocks your save operation. You can only save non-empty models.

Table 23-2. ZMUI Primary Configuration Attributes

Attribute Description

Model Name This is the name of the model. You can change the name to any
suitable value.

Package This defines the namespace for the compiled object classes
that will create the in-game NGOs. You cannot change the
package name; it is always set to zona.ext.

132 CHAPTER 23
There are three secondary configuration attributes:

There are six database configuration attributes:

Changing the Model File Name

To change the model file name, within ZMUI:

Table 23-3. ZMUI Secondary Configuration Attributes

Attribute Description

Current Config File Contains a reference to the specific model configuration file (which stores
all configuration data). The default Zona Modeler configuration file is:
%ZONA_HOME%\config\ZonaModelerConfig.xml (Windows)
$ZONA_HOME/config/ZonaModelerConfig.xml (Linux)

Project Root Dir Contains a reference to the root directory for your IDE or development
environment.

Database
Configuration

Contains various database-specific access parameters and credentials.
Initially defined during the install of Terazona.

Table 23-4. ZMUI Database Configuration Attributes

Attribute Description

Platform Specifies which database architecture to use for this connection. ZMUI
displays only supported database architectures.

Host The database server’s IP address or hostname.

Port The database server’s listening IP port.

Database The database name within the database server.

Username A database user with authority to create Tables in the database.

Password The authorized user’s password.

The Audit configuration tab with the ZMUI displays the same attributes. Use the Audit Tab to
define the Audit Database Configuration.

TERAZONA DEVELOPER GUIDE 133

Using the Model File
1 Within the right-hand Model panel, click in the Model Name text field:

2 Highlight the existing model name text.

3 Replace the existing text with your new model name.

4 Press the Enter key (on the keyboard) to register your change. The root node name in
the left-hand panel updates to reflect your change.

5 Select File > Save...

6 Type a name for your on-disk model file.

7 Click the Save button.

8 Your change to the model name has been saved.

Changing the Model Configuration File Reference

ZMUI remembers the last-referenced model configuration file and inserts this as the
initial, referenced file for all new models. To change the configuration file, or to modify
the values, within ZMUI:

Figure 23-3. Zona Modeler - Changing Model Name

134 CHAPTER 23
1 Select File > Configure...

2 The Configuration dialog displays:

Figure 23-4. Zona Modeler - Configuration Selected

Figure 23-5. Zona Modeler - Configuration Display

TERAZONA DEVELOPER GUIDE 135

Using the Model File
3 To change the Current Configuration File reference, click the Change... button on
this line.

4 The Choose Config File... file browser dialog displays.

Figure 23-6. Zona Modeler - Change Current Configuration File

Figure 23-7. Zona Modeler - Choose Configuration File

136 CHAPTER 23
5 Type a name for your new model configuration file, or navigate to an existing model
configuration file.

6 Click the OK button.

7 The Choose Config File... file browser dialog closes and the Configuration dialog
again displays.

8 Click the Save button.

9 Persist your changed model file to disk using the File > Save... command.

10 Your new model configuration file has been saved has been saved.

Changing the Project Root Directory

You can integrate Zona Modeler output with your development environment by
specifying the location of your .DSP (or other IDE files) within the Project Root Dir:
field. During its compile process, Zona Modeler will deploy the generated C++ source
code (both .h and .cpp) files to this directory for easy integration with your other
development code. To specify a project root directory:

1 Select File > Configure...

2 The Configuration dialog displays:

Figure 23-8. Zona Modeler - Save Configuration File Choice

The Audit configuration tab displays the same configuration attributes. Use the Audit Tab to
define the Audit Database Configuration.

TERAZONA DEVELOPER GUIDE 137

Using the Model File
3 Click the Change... button on the same row as the Root Project Dir.

4 The Choose Target CPP Dir... file browser dialog displays.

5 Navigate to your selected Project directory (that contains your IDE project files).

6 Highlight the selected directory and click the OK button.

Figure 23-9. Zona Modeler - Change Project Root Directory

Figure 23-10. Zona Modeler - Selecting the Project Root Directory

138 CHAPTER 23
7 The Configuration dialog redisplays, updated to reflect your Project Root Directory
selection. Click the Save button.

8 The main ZMUI screen redisplays.

9 Save your changes using the File > Save menu option.

Changing the Game and Audit Database Configuration

Zona Modeler stores the database parameters for a particular model file in the referenced
configuration file. To change the database parameters, edit the referenced Zona Model
configuration file using the ZMUI:

1 Select File > Configure...

2 The Configuration dialog displays:

3 Select either the Game or Audit tab.

4 The database parameters display in the Database Configuration sub-panel.

5 Change the old parameters to your new, desired parameters.

6 When you have finished making your changes, click the Save button.

Figure 23-11. Zona Modeler - Project Root Directory Selected

TERAZONA DEVELOPER GUIDE 139

Using the Model File
7 Your new database parameters have been saved.

Renaming or Copying Your Model File

To rename (or to create another copy of) your model file from within ZMUI:

1 Select File > Save As...

2 The Select Zona Modeler XML File dialog displays.

3 Navigate to the directory where you want to save your new copy of the model file.

4 Enter the new model name into the File Name field.

5 Click the Save button.

6 Your model file (and associated configuration information) has been saved with your
new specified name.

Within the Database Configuration sub-panel, the “Platform” drop-down displays a list of
currently supported database platforms. Although Terazona can operate with any database
platform that supports JDBC connectivity, only the platforms displayed in the drop-down have
been tested and certified for optimum production performance and stability.

Figure 23-12. Zona Modeler - Save As... Selected

140 CHAPTER 23
Creating Model Entities

ZMUI initially creates a blank model file with a single root node, Model. You can and
should change this default root node name. The default root node is “empty” and
contains no elements. The first thing you should do is add an Entity to the root node.

Within the ZMUI, you can add three types of Elements to any root node:

Adding a Character Entity

Character Entities are associated with Player Ids and extend ZonaServerCharacter.
To create a Character Entity within ZMUI:

1 Use the mouse to highlight the root node element.

Table 23-5. ZMUI Elements

Entity Element Description

Character This corresponds to a Zona Server
Character.

Child This corresponds to a Zona Server
Entity.

Guild This corresponds to a Zona Server
Guild.

TERAZONA DEVELOPER GUIDE 141

Creating Model Entities
2 Option-click the mouse while hovering the cursor over the root node element. The
Add Entity popup displays.

3 Either click or option-click to select the Add Entity action.

4 The New Entity dialog displays. The default Entity in the Type dropdown is
“Character”.

5 Click in the Name field to name your Character Entity.

6 Click the OK button to close the New Entity dialog.

7 The ZMUI display updates to display your newly created Character Entity.

8 Save your changes using the File > Save menu option.

Adding a Child Entity

Child Entities extend ZonaServerEntity. To create a Child Entity within ZMUI:

1 Use the mouse to highlight the root node element.

2 Option-click the mouse while hovering the cursor over the root node element. The
Add Entity popup displays.

3 Either click or option-click to select the Add Entity action.

4 The New Entity dialog displays. Click the Type dropdown to display the available
Entity choices.

5 Select the “Child” entry in the Entity Type dropdown list.

Figure 23-13. Zona Modeler - Add Entity

142 CHAPTER 23
6 Click in the Name field to name your Child Entity.

7 Click the OK button to close the New Entity dialog.

8 The ZMUI display updates to display your newly created Child Entity.

9 Save your changes using the File > Save menu option.

Adding a Guild Entity

Guild Entities extend ZonaServerGuild. To create a Guild Entity within ZMUI:

1 Use the mouse to highlight the root node element.

2 Option-click the mouse while hovering the cursor over the root node element. The
Add Entity popup displays.

3 Either click or option-click to select the Add Entity action.

4 The New Entity dialog displays. Click the Type dropdown to display the available
Entity choices.

5 Select the “Guild” entry in the Entity Type dropdown list.

6 Click in the Name field to name your Guild Entity.

7 Click the OK button to close the New Entity dialog.

8 The ZMUI display updates to display your newly created Guild Entity.

9 Save your changes using the File > Save menu option.

Designing Model Entities

Zona Modeler creates initial Entities with three default Entity Properties:

Table 23-6. Default Entity Properties

Entity Property Description

System This corresponds to the Terazona System Property. Initially, there are no
System Property Elements. You can add System Property Elements using the
ZMUI.

Private This corresponds to the Terazona Private Property. Initially, there are no Private
Property Elements. You can add Private Property Elements using the ZMUI.

Public This corresponds to the Terazona Public Property. Zona Modeler auto-
generates an array of Public Property Elements. These contain auto-generated
non-editable Public Property Element data, required for Terazona operation.
You can add additional Public Property Elements using the ZMUI.

TERAZONA DEVELOPER GUIDE 143

Designing Model Entities
The default Entity Properties display within the ZMUI’s Object Tree top-left panel:

Figure 23-14. Zona Modeler - Default Entity Attributes

144 CHAPTER 23
Examining the Entity Attributes

The top-left Entity Inspector panel displays the Entity Attributes for each Entity selected
in the top-right Object Tree panel, and also enables you to edit the Entity Attribute
values. The un-ghosted Entity Attribute values are editable while some Attribute values
are aare ghosted and non-editable (that is, these are auto-generated by Zona Modeler).

There are five Entity Attributes:

Table 23-7. Entity Attributes

Entity Property Description

Entity Name Defines the name of this Entity. Editable.

Class Id The Class Id embedded by Zona Modeler within the run-time Entity object
instantiation meta data. Non-editable.

Class Modifier Modifies the auto-generated Zona Modeler output classes with one of the
Java-dervived inheritance/subclassing control definitions:
regular - standard class
abstract - You cannot instantiate an object of this class, but you can subclass.
final - You can instantiate an object of this class, but you cannot subclass.

Extends Describes which category of Terazona API class this class extends from.

Implements Defines which Interface this Property implements.

DB Table Describes the name of the Table used to persist this class within the Zona
Modeler database.

Audit This defines whether the Auditing Server will audit any of this Property’s
Elements. This must be selected to enable the auditing of any of the
Property’s Elements.

Comments Defines text comments for selected Entities or Properties. These comments
do not affect the game logic.

TERAZONA DEVELOPER GUIDE 145

Designing Model Entities
Examining the Entity Property Attributes

All Zona Modeler Entity Properties exhibit six Entity Property Attributes:

Table 23-8. Entity Property Attributes

Entity Property

Attribute
Description

Name This identifies the Terazona API name for this class of Property Elements.

Type This defines the type of this class of Property Elements.

Length This defines the length of this class of Property Elements, in units of Type.

Persistent This defines whether this class of Property Elements should be persisted to
the Game Database.

DB Column
Name

This defines the column identifier used within the Zona Modeler database to
reference this class of Property Element.

Indexed This defines whether Zona Modeler will use this class of Property Elements
as a foreign key for queries.

Audit This defines whether the Auditing Server will audit this Property. Auditing
must have been selected within the parent Property to enable the auditing of
any of the Property Elements.

The sub-properties of the Entity Properties, or the Entity Property Elements, also use the same
Attributes. See Displaying Entity Property Elements on page 149.

146 CHAPTER 23
Displaying Entity Property Attributes

To display the Entity Property Attributes for a specific Zona Modeler Entity, select the
Entity Property in the Object Tree top-left panel. The top-right Inspector panel updates
to display the Entity Property Attributes.

Figure 23-15. Zona Modeler - Public Property Attributes Displayed

TERAZONA DEVELOPER GUIDE 147

Designing Model Entities
Examining the Entity Property Elements

For each type of Entity created, Zona Modeler auto-generates an array of type-specific
Entity Property Elements with non-editable data values. The Entity Property Elements
correspond to Terazona API member function parameters, and enable you to examine
and define the Entity Property Element Characteristics, which use the same six
definitions as the Entity Property Characteristics described in Entity Property Attributes on
page 145.

There are nine default Character Entity Public Property Elements:

There are seven default Child Entity Public Property Elements:

Table 23-9. Character Entity Public Property Elements

Entity Property

Elements
Description

entityId The Entity Id parameter definition for the Character Entity Public Property.

parentId The parentId parameter definition for the Character Entity Public Property.

entityType The entityType parameter definition for the Character Entity Public
Property.

userRole The userRole parameter definition for the Character Entity Public Property.

regionId The regionId parameter definition for the Character Entity Public Property.

isMaster The isMaster parameter definition for the Character Entity Public Property.

userId The userId parameter definition for the Character Entity Public Property.

name The name parameter definition for the Character Entity Public Property.

entityInfo The entityInfo parameter definition for the Character Entity Public Property.

Table 23-10. Child Entity Property Elements

Entity Property

Elements
Description

entityId The Entity Id parameter definition for the Child Entity Public Property.

parentId The parentId parameter definition for the Child Entity Public Property.

entityType The entityType parameter definition for the Child Entity Public Property.

userRole The userRole parameter definition for the Child Entity Public Property.

regionId The regionId parameter definition for the Child Entity Public Property.

isMaster The isMaster parameter definition for the Child Entity Public Property.

entityInfo The entityInfo parameter definition for the Child Entity Public Property.

148 CHAPTER 23
There are five default Guild Entity Property Elements:

Table 23-11. Guild Entity Property Elements

Entity Property

Elements
Description

guildId The guildId parameter definition for the Guild Entity Public Property.

propertyAttributes The guildId parameter definition for the Guild Entity Public Property.

inviterAttributes The guildId parameter definition for the Guild Entity Public Property.

guildName The guildId parameter definition for the Guild Entity Public Property.

entityInfo The guildId parameter definition for the Guild Entity Public Property.

TERAZONA DEVELOPER GUIDE 149

Designing Model Entities
Displaying Entity Property Elements

To display the Property Elements for a specific Zona Modeler Entity, select an Entity
Property in the Object Tree top-left panel. If it is not “open”, click the associated ⊕
“twisty” icon to display the list of Property Elements. Select an Element by clicking on it.
The top-right Inspector panel updates to display your selected Entity’s Property Element
Attributes:

Figure 23-16. Zona Modeler - Entity System Property Element Attributes

150 CHAPTER 23
Adding Entity Property Elements

Zona Modeler enables you to non-programmatically create and modify Public, Private,
and System Property Elements of Game Objects. Instead of tinkering with struct and
class definitions, you can use Zona Modeler to refine and optimize your in-game data
structures. To add an Entity Property Element:

1 In the top-left Object Tree panel, select your desired Entity Property by highlighting it
with a mouse click or the keyboard.

Figure 23-17. Zona Modeler - Selecting an Entity Property

TERAZONA DEVELOPER GUIDE 151

Designing Model Entities
2 Option-click the selected Entity Property. The Add Property popup menu item
displays.

3 Click the Add Property menu item. The Object Tree panel updates to reflect your
Entity Property Element addition.

Figure 23-18. Zona Modeler - Adding an Entity Property Element

Figure 23-19. Zona Modeler - Entity Property Element Added

152 CHAPTER 23
To display the newly added Entity Property Element, click the associated ⊕ “twisty” icon
as described in Displaying Entity Property Elements on page 149.

Examining Entity Property Element Attributes

When created, Entity Property Element Attributes contain these default values:

Table 23-12. Default Entity Property Element Attributes

Entity Property

Attribute
Description

Property Name The name of the Entity Property Element.
Default: property.

Property Type The type of this class of Entity Property Element. The options are:
boolean - default
byte
char
short
int
long
float
double

Length The length of this class of Entity Property Elements, in units of Property Type.
Default: 1

isPersistent Defines whether this class of Property Elements should be persisted to the
Game Database.
Default: YES

Column Defines the column identifier used within the Zona Modeler database to
reference this class of Entity Property Element.
Default: property

Indexed Defines whether Zona Modeler will use this class of Property Elements as a
foreign key for queries.
Default: NO

TERAZONA DEVELOPER GUIDE 153

Designing Model Entities
Modifying Entity Property Element Attributes

1 To modify the Property Element Attributes for a specific Zona Modeler Entity
Element, select an Entity Property in the Object Tree top-left panel.

2 If it is not “open”, click the associated ⊕ “twisty” icon to display the list of Entity
Property Elements. Select an specific Element by clicking on it.

3 The top-right Entity Inspector panel updates to display your selected Entity’s Property
Element Attributes:

Figure 23-20. Zona Modeler - Displaying an Entity’s Property Element Attributes

154 CHAPTER 23
4 Select the field(s) you want to modify. Type a new value, select a new value from the
drop-down menu, or check/uncheck the radio boxes.

5 When you have finished making your desired changes, click on the new Entity
Property Element in the top-left Object Tree panel. The display updates to reflect your
changes

Figure 23-21. Zona Modeler - Modifying an Entity’s Property Element Attributes

Figure 23-22. Zona Modeler - Displaying a Modified Entity’s Property Element Attributes

TERAZONA DEVELOPER GUIDE 155

Compiling Model Entities
Compiling Model Entities

During the design-time phase of Zona Modeler UI, you create and modify Zona Model
Entities to represent Network Game Objects. During the run-time phase of Zona
Modeler UI, you command Zona Modeler to compile your Zona Model Entities and
produce output code and metadata.

During this run-time compilation phase, Zona Modeler combines your Model File with
its constituent Entities and database references to auto-generate C++ and Java code
binaries that, combined with auto-generated database information, is suitable for Server-
side run-time object instantiation and Client-side project linking and embedding.

Running Zona Modeler

1 Select File > Save As...

Figure 23-23. Zona Modeler - Menu Item “Run” Selected

156 CHAPTER 23
2 A Confirm Configuration dialog displays, giving you the option to modify the
database configuration (Configure), run a batch file (Run Setup...) or to compile the
Model Entities (Run ZM). Click the Run ZM button to continue.

3 Zona Modeler compiles your Model Entities and displays its progress within the
Console window. You can scroll through the command output to check for errors,

Figure 23-24. Zona Modeler - Confirm Configuration Dialog

TERAZONA DEVELOPER GUIDE 157

Compiling Model Entities
inconsistencies, or to monitor Zona Modeler’s outputs and output locations. A
successful build completes with the message “BUILD SUCCESSFUL”.

Figure 23-25. Zona Modeler - Successful Build Completed

Zona Modeler creates a specific output file and directory structure. You should maintain this
generated directory structure at all times, even inside your project directories:
 modeler
 client
 common
 metadata
 server

158 CHAPTER 23

�

�

�

Chapter

 24
Examining the Character Entity
Object • 160

Managing the Character Properties •
164

Updating the Character Properties •
167
Character Entity Object

This chapter explains the Character Entity Object (CharEO),
the critical “unit” of Terazona in-memory game object
representation. CharEOs also enable persistence and rollback,
because the GSSs read and write CharEOs as binary data to and
from the Game Database and as normalized data to and from
the Audit Database.
159

160 CHAPTER 24
Examining the Character Entity Object

The Character Entity Object (CharEO) is the fundamental transfer unit between the
GSSs and the Game Database. Every CharEO is associated with a unique, persistent
Entity Id. This can be used to relate the binary data stored within the Game Database to
the in-memory Entity and Character structures manipulated by the GSSs and
communicated among GSSs and between GSSs and Clients.

Every CharEO has a single Master GSS that owns the primary copy of that data. Any
GSS can use the ZonaServerCharacter::getMaster() function to check for
ownership.

The CharEO also contains Entity-specific and header data such as timestamps, Class Ids,
Entity Type information, and various system flags and memory allocation data used by
the GSSs for transaction processing and bandwidth optimization.

Understanding the Character Entity Properties

The CharEO is the complete binary representation of an Entity or Character. The
Character Properties are a data structure subset of the CharEO comprising the Public
Properties and the Private Properties that enables you to selectively modify and publish
data between Clients and GSSs. There are three Character Entity Properties:

Table 24-1. Character Entity Properties

Property Description

Public Properties Repository for public data such as display textures, location, or size
that are published to all GSSs and Clients.

Private Properties Repository for private Client-specific data such as ammunition that
are published to all GSSs but only to the owning Client.

System Properties Repository for private data such as curses or secrets that are
published to all GSSs but never to any Clients (including the owning
Client.)

TERAZONA DEVELOPER GUIDE 161

Examining the Character Entity Object
Only the GSSs have complete access to all the data within a CharEO, including the
System Properties. As a GSS Plugin developer, you control the validation of information
requests from Clients and therefore control Clients’ access to the information contained
within their CharEOs and other Clients’ CharEOs.

The default behavior of Terazona’s GSSs is to publish all the Public Properties to all
Clients, to publish the Private Properties only to the owning Client (and never to non-
owning Clients), and finally to deny absolutely any Client access to their (or other
Clients’) System Properties.

The Master GSS Plugin can directly modify the Character Properties (CharProps) of
CharEOs that it owns, and then publish these changes to other GSSs that store Ghost
copies of that CharEO. To modify the Master copy of a CharEO owned by another GSS,
the GSS Plugin sends a modification request to the owning GSS, which then validates
this request. When GSSs modify their CharEOs, the GSS Plugin developer can choose to
save these changes to the Game Database or to propagate the changes to any or all of the
managed Clients.

The truncation of the CharEO throughout the Terazona system safeguards Client
security and privacy, protects system integrity, and reduces bandwidth requirements. The
following illustrations demonstrate how each system in Terazona receives a different
version of the CharEO.

The NPC Server is a Trusted Client and receives Entity and Character Updates the same way as
other, non-trusted Clients. However, the bandwidth available between NPC Servers and GSSs
is typically several hundred times greater than the bandwidth available between Clients and
GSSs. Your NPC Server can perform data-instensive operations that would not function well for
other, non-LAN Clients.

162 CHAPTER 24
All GSSs maintain the most complete version of the CharEO. The managing GSS
maintains the Master CharEO while other GSSs that have subscribed to entity updates
from that Client (because of Regional proximity or in-game activities) maintain a Ghost
CharEO. The managing GSS publishes a subset of the CharEO to its managed Client
that omits the System Properties. The other GSSs publish a subset of their Ghosted
CharEOs to their managed Clients that contains only the Public Properties.

The owning Client does not receive a local copy of its System Properties. From a Player’s
point of view, they may suspect that their Character possesses some attributes or “curse”
that is affecting their interactions with other Characters, but they have to deduce this
from second-hand information.

Figure 24-1. Character Entity Object - GSS’s Version

Figure 24-2. Character Entity Object - Owning Client Local Version

Public
Properties

Private
Properties

System
Properties

Character Entity Object
(GSSs’ Version)

Public
Properties

Private
Properties

Character Entity Object
(Owning Client Local Version)

TERAZONA DEVELOPER GUIDE 163

Examining the Character Entity Object
The non-owning Clients receive only that portion of another Client’s CharEO necessary
to display that Client within their game environment. This lowers Client<->Server
bandwidth requirements and protects against Client-side hacking and packet snoop
attacks.

Figure 24-3. Character Entity Object - Other Clients’ Local Version

Public
Properties

Character Entity Object
(Other Clients’ Local Version)

164 CHAPTER 24
Managing the Character Properties

When you instantiate either a ZonaServerCharacter, ZonaClientCharacter, or
ZonaClientEntity object, you gain access to an array of auto-generated object-
specific getter and setter methods, along with appropriate utility functions. During its
code generation stage, Zona Modeler auto-generates these getter and setter methods for
Entity properties defined within the Zona Model file.

Following Character or Entity instantiation, you use the getXXXX() functions to access
the property data (where XXXX is a Public, Private, or System Property developer-defined
within the Zona Model file). Then you use the setXXXX() functions to modify the
property data.

The Zona Entity Manager (ZEM) maintains synchronization between objects on the
GSS and attached Clients. For both Client-side and Server-side Property modifications,
the ZEM maintains a “dirty list” of data that require updating or propagation. You do not
need to explicitly tag Properties or data structures for distribution. At the end of a game
loop, you call the ZonaClientCharacter::publish() function to trigger ZEM to
bring the object data up to date. The distribution process is transparent: the Zona Entity
Manager (ZEM) handles this activity in the background, optimizing bandwidth and
message transfer between game objects.

You can check whether a Client has permission to change specific properties using the
ZonaEntityValidate::onValidateEntityPropertyUpdate() function.

Managing the Public Properties

The Public Properties contain all the data relevant to:

• The display of an Entity or Character within the game environment.

• The state of an Entity or Character within the game environment.

This Data is sent to all subscribed Clients and GSSs. Good candidates for inclusion
within the Public Properties are:

• Character or Vehicle type – usually stored as an object Id

• Children of character or vehicle – that is, weapons, books, scrolls, ammunition that
you want to store as lists and not go through the overhead of Entity instantiation.

• Character Name or physical attributes.

• Health State – visual level of damage, and so on

• Clothing - usually as an object Id

• Emotional State

• Position

TERAZONA DEVELOPER GUIDE 165

Managing the Character Properties
• Orientation

• Velocity

• Level or Prestige Ranking

The Public Properties are used for updating Character data that changes rapidly and must
be propagated quickly to other Clients. These elements are generally updated by the
Client and sent to the GSS for validation and redistribution within the Terazona cluster.
This offloads the CPU burden from the GSSs to the Clients, distributing the processing
among the Players’ machines.

Managing the Private Properties

The Private Properties contain all the data relevant to the attributes of an Entity or
Character within the game. This data is sent to the managing Client and all subscribed
GSSs. Good candidates for inclusion within the Public Properties are data that a Player
should know about their Character but that other Players should not know, such as:

• Ammo

• Level

• Dexterity

• Constitution

• Wisdom

• Hit Points

• Skills

The Private Properties are used for updating Character data that changes occasionally and
must only be shared between a Client, its managing GSS, and other GSSs with no
onward distribution to other Clients (except for game-specific GSS-validated functions
such as a “Reveal” spell or “Espionage” activity). These elements are generally updated by
the GSS and sent to the Client and other GSSs.

Managing the System Properties

The System Properties contain all the data relevant to the attributes of an Entity or
Character within the game that should be kept secret and not disclosed to any Clients
(except for game-specific GSS-validated functions such as a “Reveal” spell or “Espionage”
activity). This data is never sent to the managing Client but is distributed to all
subscribed GSSs. Good candidates for inclusion within the System Properties are data
that a Player should not know about their Character but that subtly affects their other
Properties such as:

166 CHAPTER 24
• Curses

• Geas

• Spells

• Armor Damage Modifiers

• Age

The System Properties are used for modifying Character data and storing “system secrets”
and is only shared between GSSs with no onward distribution to any Clients. These
elements are generally updated by the Managing GSS and sent to the other GSSs.

TERAZONA DEVELOPER GUIDE 167

Updating the Character Properties
Updating the Character Properties

1 Upon the Creation of Client A

a The Character Entity Object is created and initialized.

b The GSS validates this Entity Object’s creation.

c The Public Properties are published to Client A.

d The Private Properties are published to Client A.

2 When Client A Enters Client B’s Sphere:

a Public Properties of Client A are published to Client B

b Public Properties of Client B are published to Client A.

3 When Client A Moves in Client B’s Sphere of Interest (SOI):

a Client A’s Public Properties are published to Client B.

b Client B’s Public Properties are published to Client A.

4 When Client A Leaves Client B’s SOI:

a Client B is informed that Client A has exited B’s SOI.

b Zona Entity Manager on Client B’s Managing GSS purges Ghost copies of Client
A’s CharEO.

c Client A is informed that Client B is no longer within its SOI.

d Zona Entity Manager on Client A’s Managing GSS purges Ghost copies of Client
B’s CharEO.

168 CHAPTER 24

�

�

�

�

�

�

Chapter

 25
Creating a Simple Terazona C++
Client • 170

Instantiating ZonaServices • 171

Logging In • 171

Managing the Character • 172

Managing the Game State • 174

Leaving a Game • 178
Simple Client Creation

This chapter demonstrates some of the CAPI functionality
using the TrackerClient sample application.
169

170 CHAPTER 25
Creating a Simple Terazona C++ Client

The TrackerClient sample application demonstrates how to create a simple Terazona
Client. After you review this sample, you can use extend this simple Client to begin
creating more complex Terazona Clients.

Tracker Client

This code example demonstrates several key components of the client side network
process for an online game:

• Initialization of ZonaServices

• Player Login

• Selecting a Character

• Registering a Callback for Game State Monitoring

• Entering a Character into the Game

• Subscribing to the Game State

• Sending Game State data to the server

• Exiting the Character from the Game

• Player Log Off

Reviewing the code

As with any program, you need to write the code. However, creating a program to pass
messages is almost as easy as writing the classic “Hello World” program. This
walkthrough will take you through the basic steps using code fragments from the
TrackerClient.exe program installed with the client development option. You can
find the source code to the TrackerClient.exe in this directory:

%ZONA_HOME%\samples\TrackerClient\client\

The command-line invocation for TrackerClient will be:

TrackerClient username password http://host:port
 messageFrequency NoOfPackets

http://host:port

TERAZONA DEVELOPER GUIDE 171

Instantiating ZonaServices
Instantiating ZonaServices

All Terazona Clients initialize and instantiate a ZonaServices object that provides Clients
with functions to login, logout, chat, set up callbacks to receive game state updates from
other clients and server-side Entities.

The ZonaServices object requires no argument for creation. Example:

zonaServices* zonaServices;
zonaServices = new ZonaServices(); // == new ZonaServices
 // (true, false)

Logging In

Creating the Terazona services object does nothing by itself it in terms of connecting
clients to servers. To acquire a session on the server, use the ZonaServices::login()
function:

int ret_code = zonaServices->login(argv[3],
argv[1], argv[2]);
if ((ret_code != ERR_SUCCESS)) {

printf("Error logging onto Terazona server.
exiting.\n");

exit(ret_code);
}

The login function authenticates against the Game Database.

Understanding the GSS Event Sequence During Login

Client calls the Login() function

The Client sends off the username/password to the Dispatcher and it receives back the
least-loaded GSS (actually the message broker, or MB) URL to enable front-end load
balancing. This is transparent to the Client.

Dispatcher Reroutes Player to Least-Loaded GSS

The Dispatcher determines which GSS to use by checking the number of players on each
GSS as well as processor capability (the load can also depend on the number of messages
being managed by the GSS at that moment). The Client then disconnects from the
dispatcher's MB and reconnects to the GSS MB.

172 CHAPTER 25
Managing the Character

You must create Client-side ZonaClientCharacter objects. These are linked with the
ZonaServerCharacter objects maintained by the GSSs. The
TrackerCharacterClient class is auto-generated by Zona Modeler from the
definitions within the TrackerSchema.xml model file.

ZonaClientCharacterPtrVector characters;
TrackerCharacterClient *character;

Getting the Characters

TrackerClient attempts to pull Character data from the Game Database. If there is no
Character data there that corresponds to the login credentials (that is, a zero
characters array) it creates an initial, default Character):

zonaServices->getCharacters(characters);
if (characters.getSize() <= 0) {

char* theLoginName = argv[1];
int theCharacterNameLength = 2*strlen(theLoginName) + 1;
char* theCharacterName = new
 char[theCharacterNameLength];
TrackerCharacterClient* zcc = new
 TrackerCharacterClient();
sprintf(theCharacterName, "%s%s",
 theLoginName, theLoginName);
zcc->setName(theCharacterName, theCharacterNameLength);
zonaServices->createCharacter(*zcc);
character = zcc;
delete theCharacterName;

}else{
//Select first character
character = (TrackerCharacterClient*)characters[0];

}

During the creation, the code populates the Character Name using the setName()
function that has been auto-generated by Zona Modeler.

Selecting the Character

Selecting a Character means using the ZonaClientCharacter::select() function
to notify the GSS which is the active Character. The GSS will populate its Server-side
ZonaServerCharacter object cache appropriately. The code to do this is very simple:

TERAZONA DEVELOPER GUIDE 173

Managing the Character
// select a character
character->select();

Entering the Character

Now that you have created an Active Character through Selection, it is time to place the
Character within the game world.

You use the ZonaClientCharacter::enter() function to place the active Character
within the game. This alerts the GSS to start tracking the Character.

character->enter();

Before you enter a Character you must first Register for Game State Updates. See Monitoring
a GameState Callback on page 175 for details.

174 CHAPTER 25
Managing the Game State

After you create a Client Character and before you enter it within the game, you must
implement a GameState Callback class that registers with Terazona to receive the GSS
dynamic data updates.

The most basic callbacks to implement are for when a Character enters or leaves a Sphere
of Interest, when it receives a Game State Message, or when a Client has been forcibly
disconnect from a GSS.

Creating a GameState Callback

Implement a Callback object to receive game state messages:

class TrackerClient : public GameStateCallback,
 public EntityCallback
{
public:
 // this Game State callback is designed to
 receive gamestate messages
 // Messages are sent in the main() function below
 from the ZonaServices::SendGameState()
 void onReceivedGameStateMsg
 (int entityId, char* stateData, short dataSize)
 {
 //Casts byte buffer into the a data structure
 MSG_UPDATE* state = (MSG_UPDATE*)stateData;
 //Log of message recieved by client
 implemented gamestate receives
 printf("Received senderId=%i entityId=%i X=%f Y=%f\n",
 entityId, state->entityId, state->posX, state->posY);
 }
 void onNotifyEntityPropertyUpdate(ZonaClientEntity* zce)
{
 TrackerCharacterClient* myEntity;
 myEntity = (TrackerCharacterClient*)zce;
 printf("Received: property update: x: %d y: %d\n",
 myEntity->getPosX(),
 myEntity->getPosY());
 }
 // This callback is fired when an entity ENTERS
 the sphere of the user
 void onNotifyEntityJoinedSphere(ZonaClientEntity* zce)
 {
 printf("\nentityJoinedSphere:

TERAZONA DEVELOPER GUIDE 175

Managing the Game State
 playerEntityId=%d\n", zce->getEntityId());
 }
 // This callback is fired when an entity LEAVES
 the sphere of the user
 void onNotifyEntityDepartedSphere(ZonaClientEntity* zce)
 {
 printf("\nentityDepartedSphere:
 playerEntityId=%d\n",zce->getEntityId());
 }
 void onPlayerReset(int action , int error){
 printf("User has been kicked off my server
 action=%d error=%d\n", action, error);
 }
};

Monitoring a GameState Callback

Having created a suitable GameState Callback with logic to respond to your selected
game data updates, you must activate the GameState callback monitoring function
within the main body of TrackerClient.

Within the main() function, you attach a Game State callback (for event data updates
from the GSS) and an Entity Update callback (for Property updates from the GSS)
within the ZonaServices object:

// register the game state callback object
// (defined above) to receive the messages
TrackerClient* callback = new TrackerClient();
zonaServices->monitorGameState(callback);
zonaServices->monitorEntityUpdates(callback);

The monitorGameState() function is used primarily as a Character event update
channel, and the monitorEntityUpdates() function as a Character data update
channel.

176 CHAPTER 25
Subscribing to GameState Updates

After the Client has registered the GameState Callback, you can subscribe the Client to
all Terazona gamestate messages (or a subset of a particular class of gamestate messages)
about that Client using the ZonaServices::subscribeToGameStateMsgs()
function:

zonaServices->subscribeToGameStateMsgs
 (character->getEntityId(),ZONA_MSG_ALL);

Message Filters for subscriptions can be updated dynamically during game execution to
optimize Server<->Client bandwidth usage.

TERAZONA DEVELOPER GUIDE 177

Managing the Game State
Communicating with the Server

With the callbacks in place you can send and receive Property updates and Game State
Messages.

To broadcast the active Character’s “dirty” Property data to the GSS, use the
ZonaClientCharacter::publish() function.

To send game state message updates, use the ZonaServices::sendGameStateMsg()
function. To receive game state messages, use the
ZonaServices::processMessage() function.

This code example simulates the transmission of 2-dimensional positional data.

for (float i=0.0; i<10.0; i++)
{
for (float j=0.0; j<numMsg; j++)

{
// set the 2d positional data
state.posX = i;
state.posY = j;
// send the data to the Terazona Game State Server
printf("sending X=%f Y=%f\n", state.posX, state.posY);
if (propertyUpdate) {
 character->setPosX(state.posX);
 character->setPosY(state.posY);
 character->publish();
}
else
// Main call that sends game state to server
zonaServices->sendGameStateMsg((char *) &state, size);
// process the messages that were sent by the server.
while(zonaServices->getMessageBufferCount() > 0
 zonaServices->processMessage();
// wait for half second so demo doesn't end at once
Sleep(msgFreq);

}
}

The Property modification functions TrackerCharacterClient::setPosX() and
TrackerCharacterClient::setPosY() are auto-generated by Zona Modeler.

178 CHAPTER 25
Leaving a Game

Leaving a game is a two-stage process for Characters. First they must exit the game world.
Then they must end their terminate their ZonaServices session. This finalizes their exit
and ensures correct CHaracter cleanup. The sequence is:

1 ZonaClientCharacter::exit()

2 ZonaServices::logoff()

Exiting the Game World

// remove the player from the sphere
character->exit();

Logging Off

// remove the player from the game
zonaServices->logoff();

For details on how to set up a compilation and development environment for Terazona projects,
please see Development Environment on page 109.

�

�

�

Chapter

 26
Entering the Game • 180

Authenticating the Player • 182

Exiting the Game (Logout) • 184
Managing Players Using

The Server

Client-side development is only one part of developing a
Terazona application. Clients are managed on the Server-side,
by one or more Game State Servers (GSSs). Developers
program responses to Client-side calls and embed them within
the GSSs using the GSAPI functions. To completely
understand how the system handles this Character
management, you must understand the Client-Server
interaction.

This chapter describes interactions from the server-side
viewpoint.
179

180 CHAPTER 26
Managing Server-Side Characters

Characters are managed on the server-side by the Zona Entity Manager (ZEM), a
transparent Entity caching subsystem that keeps track of active Entities and Characters
and manages their memory and interactions. When you create and destroy Server-side
Entities and Characters (sometimes in response to Client-initiated function calls), the
ZEM handles the initialization and cleanup.

Entering the Game

1 Player logs on to the game.
(Authentication request is sent to the Authentication Server)

2 GSS Creates Player session object.

3 GSS sends possible character data to Client (from Game Database).

4 Player selects/builds Character for game play.

5 GSS validates selection, populates Player’s sessions object as Active Character.

6 Character enters the game.

7 GSS calls GSS ZonaEntityValidate::onEntityJoinedGame() function in
GSS Plugin.

8 GSS localizes Character in game world with specific Region.

9 GSS triggers ZonaRegionValidate::onPlaceEntityInRegion() function in
GSS Plugin.

10 GSS Plugin publishes Character location back to Client.

11 GSS triggers ZonaEntityValidate::onEnterEntity() function in GSS Plugin:
the Entity is now “live” and being tracked.

12 In response to incoming Client property updates, the GSS will fire the
ZonaEntityValidate::onValidateEntityPropertyUpdate() function
within the GSS Plugin.

13 In response to incoming Client game state messages, the GSS will fire the
ZonaGameStateValidate::onValidateGameStateMsg() function within the
GSS Plugin.

Entities are added to the ZEM immediately before the Client executes the
EntityCallback::onNotifyEntityJoinedSphere() callback, and are deleted from the
ZEM immediately after returning from a
EntityCallback::onNotifyEntityDepartedSphere() callback. Do not attempt to explicitly
delete Entities while they are being managed by the ZEM.

TERAZONA DEVELOPER GUIDE 181

Entering the Game
This table illustrates the interaction between Client, GSS Plugin, and GSS during
Character Entrance:

Table 26-1. Sequence For Character Entry

Client GSS Plugin GSS

ZonaServices::login()

Server creates a session
object for the player

ZonaServices::
getCharacters()
get list of available characters

GSS retrieves character from
database and passes Entity
Object to the client

ZonaClientCharacter::
select() from list

GSS populates session object
with the selected character

ZonaClientCharacter::
enter()

Calls ZonaEntityValidate::
onEntityJoinedGame() in
GSS Plugin

ZonaEntityValidate::
onEntityJoinedGame()
executes.

Calls ZonaRegionValidate::
onPlaceEntityInRegion()
in GSS Plugin

Implementation for
ZonaRegionValidate::
onPlaceEntityInRegion()
should publish the starting
location back to the entering
character

Calls ZonaEntityValidate::
onEnterEntity() in GSS
Plugin

ZonaEntityValidate::
onEnterEntity() executes.
Developer implementation
should create a local entity
object and publish notification
back to Client.

182 CHAPTER 26
Authenticating the Player

The player is authenticated in the login stage before Character selection. This is done by
the Authentication Server following a request by the Dispatcher. Following successful
Authentication, a player session is then associated with the least-loaded GSS.

Placing the Character

This is the sequence for Character Placement.

Table 26-2. Character Placement Sequence

Client GSS Plugin GSS

ZonaClientCharacter::
enter()

Calls ZonaEntityValidate::
onEntityJoinedGame() in
GSS Plugin

ZonaEntityValidate::
onEntityJoinedGame()
executes.

Calls ZonaRegionValidate::
onPlaceEntityInRegion()
in GSS Plugin

Implementation for
ZonaRegionValidate::
onPlaceEntityInRegion()
should publish the starting
location back to the entering
character

Calls ZonaEntityValidate::
onEnterEntity() in GSS
Plugin

ZonaEntityValidate::
onEnterEntity() executes.
Developer implementation
should create a local entity
object and publish notification
back to Client.

EntityCallback::
onEntityJoinedSphere()
is called.

TERAZONA DEVELOPER GUIDE 183

Entering the Game
Entering client calls
ZonaServices::
sendGameStateMsg() to
update data on server.

Detects Client game state
messages, causes
ZonaGameStateValidate::
onValidateGameStateMsg()
to fire in GSS Plugin

Other clients in Sphere start
receiving game state via
GameStateCallback::
onReceivedGameStateMsg()

GSS Plugin can start calling
publish functions to send data
to other Clients and GSSs

Table 26-2. Character Placement Sequence

Client GSS Plugin GSS

184 CHAPTER 26
Exiting the Game (Logout)

This is the sequence for Character Exit & Player Logout:

Table 26-3. Sequence For Character Exit & Player Logout

Client GSAPI GSS

Call ZonaClientCharacter::
exit()

Calls ZonaEntityValidate::
onEntityDepartedGame() in
GSAPI

ZonaEntityValidate::
onEntityDepartedGame()
executes. Save lasts state to
database.

Calls ZonaEntityValidate::
onExitEntity() on Plugin to
signal GSS is stopping tracking
Character

ZonaEntityValidate::
onExitEntity()signals GSS
to purge entity cache.

Other clients in Sphere receive
EntityCallback::
onNotifyEntity
DepartedSphere() and they
can remove exited Character
from their game environment.

Call
ZonaServices::logoff() to
completely disengage Client

�

�

�

�

�

Chapter

 27
Creating a Character • 186

Selecting a Character • 187

Modifying a Character • 188

Storing a Character • 188

Deleting a Character • 189
Managing Characters Using

The Server

Character Management can be considered a separate issue from
Player and Entity management because of specialized nature of
dealing with Characters. Character Management entails
creation, deletion, selection, storage and modification of
players’ game Characters. This chapter discusses in detail how
the server handles the validation of the Character Entity.
185

186 CHAPTER 27
Creating a Character

See below for the various steps taken by the client, the GSS Plugin and the GSS during
Character creation.

Table 27-1. Sequence For Character Creation

Client GSAPI GSS

ZonaServices::
createCharacter()
defines a ZonaClientCharacter
ZonaClientCharacter contains
Name, EntityId, RegionId,
ParentId, Character Properties.

Passes Character Properties to
GSS Plugin via
ZonaCharacterValidate::
onValidate
CreateCharacter()

ZonaCharacterValidate::
onValidate
CreateCharacter()
{
 Validate Char Data
 Return True/False
}

Creates a new entry in the
database
Write Changed Property data to
database if true
Returns true or false.

Client checks for success or
failure.

TERAZONA DEVELOPER GUIDE 187

Selecting a Character
Selecting a Character

To display a list of Characters selectable by a Client session, use this function:

zonaServices->getCharacters(characters);

The call to ZonaServices::getCharacters() returns the root Entities (that is,
Characters) associated with the user's Login Id. It returns an empty
ZonaClientCharacterPtrVector if there are no root characters. The children of
the root Entities are not retrieved.

To select a specific Character in the ZonaClientCharacterPtrVector array, use the
ZonaClientCharacter::select() function:

character = (TrackerCharacterClient*)characters[0];
character->select();
//Define unique entity ID
state.entityId = character->getEntityId();

It is the caller’s responsibility to delete the objects pointed to by the pointers in the returned
ZonaClientCharacterPtrVector. Don’t delete the Character object that is to be
selected!

Entities are added to the ZEM immediately before the Client executes the
EntityCallback::onNotifyEntityJoinedSphere() callback, and are deleted from the
ZEM immediately after returning from a
EntityCallback::onNotifyEntityDepartedSphere() callback. Do not attempt to explicitly
delete Entities while they are being managed by the ZEM.

188 CHAPTER 27
Modifying a Character

Character data can be modified by both the client and the GSS Plugin. Which data gets
modified by which component depends on the game design and the data itself. However,
an example case is easily described here.

Data such as positional and orientation data is commonly modified by the user. Data
such as health and wisdom are commonly modified by the GSS Plugin. Because the client
has access to all of the these data attributes, it is the responsibility of the GSAPI to
validate the character attributes during the course of the game. The separation of the
Character attributes are described further in Character Entity Object on page 159.

Storing a Character

Once the Character is selected, it can be modified and updated. The
ZonaClientCharacter::update() function updates the Entity Object for the
character in the database and also the game server cache. The data is saved in the database
as a data blob. This allows you to easily update and expand a Character Record without
having to predefine the database schema.

Table 27-2. Sequence For Character Storage

Client GSAPI GSS

ZonaClientCharacter::
update()

Processes Char Entity Object
Passes Character Properties to
GSAPI via
ZonaCharacterValidate::
onValidateUpdateCharacter()
function

ZonaCharacterValidate::
onValidateUpdateCharacter()
{
 Validate Entity Object
 Return True/False
}

Updates the existing CharEO to
database if true
true or false. Sets new EntityId;

Client goes home happy if
no errcode

TERAZONA DEVELOPER GUIDE 189

Deleting a Character
Deleting a Character

The character is deleted by simply calling the ZonaServices::deleteCharacter()
function with the parameter being the character ID. This removes the character from the
database.

Table 27-3. Sequence For Character Deletion

Client GSAPI GSS

ZonaServices::
deleteCharacter
 (int characterId)

ZonaCharacterValidate::
onValidateDeleteCharacter()
{
 Validates request
 Return True/False
}

Deletes the character in the
database; returns errcode

Client goes home happy if no
errcode

190 CHAPTER 27

�

�

�

�

�

Chapter

 28
Using TileTest • 192

Reviewing the Code • 193

Programming the Client • 193

Programming the Server • 201

Managing the Regions • 204
Simple Client-Server Demo

Creation

This chapter illustrates how to create a simple client/server
game called TileTest using Terazona.
191

192 CHAPTER 28
Using TileTest

TileTest is a more advanced example of the client/server process. It includes both the
client-side CAPI application and the server-side GSAPI DLL. This example will show
how a developer can create a simple server-side GSAPI implementation as well as the
client-side application.

TileTest Components

This code example demonstrates the same key components of the client-side network
process in TrackerClient with the addition of a few others shown in italics

• Instantiation of ZonaServices

• Login

• Creating a Character

• Selecting a Character

• Modifying the Character

• Entity Management with a simple Entity Manager

• Entering a Character into the Game

• Registering a Callback for Game State Monitoring

• Subscribing to the Game State

• Sending Game State Data to the server

• Exiting the Game

• Logging off

In addition this system also demonstrates some server-side management:

• Game State Updates

• Simple Region Management

• Game State Validation

• Simple Entity Management

TERAZONA DEVELOPER GUIDE 193

Reviewing the Code
Reviewing the Code

You can find the source code to the TileTest.exe Client here:

%ZONA_HOME%\samples\tiletest\client

The server side code resides here:

%ZONA_HOME%\samples\tiletest\ServerPlugIn

The TileTestEntity class is auto-generated by Zona Modeler from the definitions
within the TileTestSchema.xml model file. There are several key user-defined
properties used to model system behavior:

This chapter will focus on the Server-side aspects that are not covered in Simple Client
Creation on page 169.

Programming the Client

In these code snippets, we show the various parts of the client implementation not
previously shown in the TrackerClient implementation.

Creating a Character

Creation of the character is a simple process focusing on the call to ZonaServices to create
the actual Character. Note that the Character type was set to ZONA_ET_DEFAULT in the
header definition. Other type exist for NPCs and other roles within the game. These and
other constants are defined in this file:

%ZONA_HOME%\include\zaf\ZonaGlobalConstants.h

Character creation happens in this file:

%ZONA_HOME%\samples\TileTest\client\ZonaNet.cpp

Table 28-1. Tile Test Entity

Property Description

System.cheatCorrection Defines the number of times the GSS detects a player cheat.

Private.lastLogin Defines the date of the last login.

Public.x Defines the X position variable.

Public.y Defines the Y position variable.

Public.color Defines the Tile color.

Public.blink Defines the Tile blink state.

194 CHAPTER 28
If no Character exists, then create one. Otherwise, use the Character from a call to
ZonaServices::getCharacters():

if (characters.getSize() == 0)
{

// Create a new character
wchar_t wname[128];
wcscpy(wname, username);
wcscat(wname, L"_char");
m_character = new TileTestClientEntity();
m_character->setName(dlgUsername, strlen(dlgUsername));
((TileTestClientEntity*)m_character)->setX(-1);
((TileTestClientEntity*)m_character)->setY(-1);
((TileTestClientEntity*)m_character)->setBlink(1);
((TileTestClientEntity*)m_character)->setColor(color);
m_zonaServices->createCharacter(*m_character);
ASSERT(m_character->getEntityId() != 0);

} else
m_character = characters[0];

The TileTestClientEntity class is autogenerated by Zona Modeler from the Entity
model definitions contained in the TileTestSchema.xml Zona Model file.

TERAZONA DEVELOPER GUIDE 195

Programming the Client
Modifying the Character

To modify the Character, you must modify the Character Entity Properties and then
publish these “dirty” Properties back to the Managing GSS for validation. Following
successful validation, the GSS will update the Character information across the cluster.

The main on-screen Character movement function is found here:

%ZONA_HOME%\samples\TileTest\client\TileTestDlg.cpp

The CTileTestDlg::movePlayer() function updates the local Character display
using the TileTestClientEntity::setPos() utility function.

bool CTileTestDlg::movePlayer(int offsetX, int offsetY)
{

TileTestClientEntity *e= ZonaNet::getLocalEntity();
// test map boundary
if ((e->getX()+offsetX) >= MAP_WIDTH ||

(e->getY()+offsetY) >= MAP_HEIGHT ||
(e->getX()+offsetX) < 0 ||
(e->getY()+offsetY) < 0)
return false;

int posX = e->getX() + offsetX;
int posY = e->getY() + offsetY;
// test tile
if (m_clientColl && (m_map.isPassable(posX, posY) ==
false || ZonaNet::isTileFree(posX, posY) == false))

return false;
e->setPos(posX, posY);
return true;

}

The main Character Property data update function is found here:

%ZONA_HOME%\samples\TileTest\client\TileTestClientEntity.cpp

The TileTestClientEntity::setPos() utility function uses the Zona Modeler-
generated setX() and setY() functions to update the local Character Properties:

void TileTestClientEntity::setPos(int x, int y)
{

setX(x);
setY(y);

}

The main Character data update publishing function (to alert the GSS) is found here:

196 CHAPTER 28
%ZONA_HOME%\samples\TileTest\client\ZonaNet.cpp

The ZonaNet::updateToServer() function alerts the GSS that the Client is
requesting a change in the global Character Properties, and triggers Server-side
validation:

void ZonaNet::updateToServer()
{

m_zonaServices->getCharacter()->publish();
}

TERAZONA DEVELOPER GUIDE 197

Programming the Client
Listening for Server Updates

The two main functions for receiving GSS updates to the Client Entities are coded
within this file:

%ZONA_HOME%\samples\TileTest\client\ZonaTileTest.cpp

The ZonaTileTest::onNotifyEntityPropertyUpdate() function handles the
reception of data updates from the GSS.

void ZonaTileTest::onNotifyEntityPropertyUpdate
 (ZonaClientEntity* entity)
{
 printf("ZonaTileTest::onNotifyEntityPropertyUpdate\n");
 TileTestClientEntity* myEntity =
 ZonaNet::getLocalEntity();
 TileTestClientEntity* e = (TileTestClientEntity*)entity;
 if (!e)
 return;
 int a = entity->getEntityId() ;
 int b = myEntity->getEntityId();
 bool isXORYChanged =false;
 bool isLastLogin = false;
 BitArray *bm = e->getDirtyPropertyBitMask();
 if (bm!= NULL && ((bm->bitValue(e->getXBitIndex()) != 0)
 || (bm->bitValue(e->getYBitIndex()) != 0)))
 isXORYChanged = true;
 else
 isXORYChanged = false;
 if
(bm!= NULL && (bm->bitValue(e>getLastLoginBitIndex()) != 0))
 isLastLogin = true;
 else
 isLastLogin = false;
 if (entity->getEntityId() == myEntity->getEntityId()) {
 if (isXORYChanged)
 PlaySound
 ("bang.wav", AfxGetInstanceHandle(), SND_ASYNC);
 if (isLastLogin) {
 char pdata[200];
 int length =0;
 char *data = e->getLastLogin(length);
 CString myString;
 m_dlg->GetWindowText(myString);
 sprintf

198 CHAPTER 28
 (pdata,"%s (Login Since:%s)",myString, data);
 m_dlg->SetWindowText(pdata);
 delete[] data;
 }
 }
 int x = e->getX();
 int y = e->getY();
}

The server-side GSS function that validates these Client updates is
ZonaCharacterValidate::onValidateEntityPropertyUpdate().

Check the code comments in the ZonaTileTest.cpp file for a description of the optimizing
bitmask algorithm used in this function.

TERAZONA DEVELOPER GUIDE 199

Programming the Client
Managing the Client-Side Entities

You do not have to write code to explicitly manage multiple server-side Entities because
the GSS’s transparent Zona Entity Manager (ZEM) handles this administrative task for
you, freeing you to concentrate on coding game logic. All you need to do is get a pointer
to the list of all Entities currently being managed by ZEM.

To retrieve all the Entity objects currently being managed by the ZEM, use the
ZonaServices::getAllEntities() function. This will return a pointer to the
Entity object vector ZonaBaseEntityPtrVector.

 The Client-side code that retrieves the Entities from the ZEM is found in this file:

%ZONA_HOME%\samples\TileTest\client\ZonaNet.cpp

The ZonaNet::isTileFree() function retrieves the managed Entities when it is
referenced by the TileTestDlg::movePlayer() UI handler for displaying legal Tile
moves:

Entities are added to the ZEM immediately before the Client executes the
EntityCallback::onNotifyEntityJoinedSphere() callback, and are deleted from the
ZEM immediately after returning from a
EntityCallback::onNotifyEntityDepartedSphere() callback. Do not attempt to explicitly
delete Entities while they are being managed by the ZEM.

200 CHAPTER 28
bool ZonaNet::isTileFree(int x, int y)
{

ZonaBaseEntityPtrVector entities;
int entityCount = m_zonaServices-
>getAllEntities(&entities);
TileTestClientEntity *e;
for (int i=0; i<entityCount; i++)
{

e = (TileTestClientEntity*)entities[i];
if (e->positionIs(x,y))
 return false;

}
return true;

}

The ZonaServices.getAllEntities() function fetches from the ZEM a list of all local
Entities (and all remote Entities) within the Character’s SOI and returns the number of Entities
as an int. This function executes locally and does not access the GSS.

This contrasts with the ZonaClientEntity.getChildEntities() function. This bypasses
the Client-side ZEM to fetch from the GSS a list of all Child Entities owned by the calling Entity
and returns an int error code indicating the success or failure of the operation.

TERAZONA DEVELOPER GUIDE 201

Programming the Server
Programming the Server

This section presents the Server-side GSS Plugin code that validates the Client-side code.
There are several key files used for server-side Entity management and validation:

%ZONA_HOME%\samples\TileTest\ServerPlugIn\
 TileTestServerPlugin.cpp

Defines the Server-side Entity object behavior. Contains two behavior validation and
constraint functions. These are the TileTestServerPlugin::isTileFree()
and TileTestServerPlugin::oneTileMove() functions.

%ZONA_HOME%\samples\TileTest\ServerPlugIn\ZonaServer*.cpp

This directory contains seven implementation files:

ZonaCharacterValidate.cpp
ZonaEntityValidate.cpp
ZonaGameStateValidate.cpp
ZonaGuildValidate.cpp
ZonaRegionValidate.cpp
ZonaSystem.cpp
ZonaTimerEvents.cpp

These implementations handle game initialization, Client data validation, and data
publishing and synchronization between other GSSs and their Clients.

Managing the Server-side Entities

You do not have to write code to explicitly manage multiple server-side Entities because
the GSS’s transparent Zona Entity Manager (ZEM) handles this administrative task for
you, freeing you to concentrate on coding game logic. All you need to do is get a pointer
to the list of all Entities currently being managed by ZEM.

To retrieve all the Entity objects currently being managed by the ZEM, use the
ZonaGSPublish::getAllEntities() function. This will return a pointer to the
Entity object vector ZonaBaseEntityPtrVector.

 The Server-side code that retrieves the Entities from the ZEM is found in this file:

%ZONA_HOME%\samples\TileTest\ServerPlugIn\

Entities are added to the ZEM immediately before the Client executes the
EntityCallback::onNotifyEntityJoinedSphere() callback, and are deleted from the
ZEM immediately after returning from a
EntityCallback::onNotifyEntityDepartedSphere() callback. Do not attempt to explicitly
delete Entities while they are being managed by the ZEM.

202 CHAPTER 28
 TileTest_ServerPlugin.cpp

The TileTest_ServerPlugin::isTileFree() retrieves the managed Entities
when it is referenced by the Entity validation function
ZonaEntityValidate::onValidateEntityPropertyUpdate() to check for
legal Tile move behavior:

bool isTileFree(int myId, int x, int y)
{

ZonaBaseEntityPtrVector entities;
int entityCount = getAllEntities(&entities);
TileTestEntity *e;
 int eX, eY;
for (int i=0; i<entityCount; i++)
{

e = (TileTestEntity*)entities[i];
eX = e->getX();
eY = e->getY();
if (myId!= e->getEntityId() && (x == eX && y == eY))
 return false;

}
return true;

}

TERAZONA DEVELOPER GUIDE 203

Programming the Server
Validating the Client Request

The incoming Client property modification requests are received by the
ZonaEntityValidate::onValidateEntityPropertyUpdate() function:

bool onValidateEntityPropertyUpdate
 (ZonaServerEntity* entity, ZonaServerEntity* prev)
{
 entityState state;
 TileTestEntity* e = (TileTestEntity*)entity;
 TileTestEntity* last = (TileTestEntity*)prev;
 state.posX = e->getX();
 state.posY = e->getY();
 zprintf("onValidateEntityPropertyUpdate() entityId=%d
sent x=%d y=%d lastX=%d lastY=%d\n",
 e->getEntityId(),
 state.posX, state.posY,
 last->getX(), last->getY());
 // ASSUMPTION: First location sent is valid
 if(last->getX() == -1 || last->getY() == -1) {
 return true;
 }
 if (isTileFree(e->getEntityId(),
 int(state.posX), int(state.posY))
 && map.isPassable(int(state.posX), int(state.posY))
 && oneTileMove(e, last)) {
 zprintf("%i made a valid move\n", e->getEntityId());
 // Player position is good
 return true;
 }
 else {
 e->setX(last->getX());
 e->setY(last->getY());
 e->setCheatCorrection(last->getCheatCorrection()+1);
 // save to DB
 e->save(false);
 zprintf
 ("%i made an INVALID move!\n", e->getEntityId());
 return true;
 }
}

After checking the validity of the nature of the property modification requested, the data
is processed for game-specific logical validation. The getCheatCorrection() and
setCheatCorrection() functions are autogenerated by Zona Modeler from the
definitions within the TileTestSchema.xml model file.

204 CHAPTER 28
When a property change is validated, the Plugin sets that Property dirty. This will cause
Terazona to push this changed property value to all subscribed GSSs and Clients. If the
validation function returns false, then the GSS publishes propagates the older, correct
Character state back to managed Client. This corrected data is received by the Client’s
ZonaTileTest::onNotifyEntityPropertyUpdate() function and its Entity
properties are reset to their correct values.

Managing the Regions

The Regions are also managed within this file:

 %ZONA_HOME%\samples\TileTest\ServerPlugIn\ZonaServer\
 ZonaRegionValidate.cpp

This defines a very simple, rectilinear grid Region structure.

byte g_regionType = 50;
static byte g_currentRegionId = 0;
static int g_numberOfRegions = 1;
int onGetRegionCount(int mapId)
{
 return g_numberOfRegions;
}
void onInitializeRegions(){}
int* onGetAllRegionIds(unsigned int *numIds)
{
 int* allRegionIds = NULL;
 allRegionIds = new int[1];
 allRegionIds[0] = g_currentRegionId;
 *numIds = 1;
 return allRegionIds;
}
int* onGetRegionNeighbors(int mapId, int regionId, byte
regionType, unsigned int *numIds)
{
 *numIds = 0;
 int *allRegionIds = NULL;
 return allRegionIds;
}
bool onPlaceEntityInRegion(ZonaServerEntity *entity, int

TERAZONA DEVELOPER GUIDE 205

Managing the Regions
mapId, int regionId)
{
 zprintf("\nonPlaceEntityInRegion\n");
 TileTestEntity *e = (TileTestEntity *)entity;
 char loginTime[50];
 SYSTEMTIME mySYSTIME;
 GetLocalTime(&mySYSTIME);
 sprintf(loginTime,"%i/%i-%i:%i",mySYSTIME.wMonth,
 mySYSTIME.wDay,
 mySYSTIME.wHour,
 mySYSTIME.wMinute);
 zprintf("login Time : %s\n",loginTime);
 e->setLastLogin(loginTime,strlen(loginTime));
 e->save(false);
 return true;
}

The onPlaceEntityInRegion() function uses the setLastLogin() function
autogenerated by Zona Modeler from the definitions within the TileTestSchema.xml
model file.

206 CHAPTER 28

Glossary

GSS. Game State Server

Sphere Server. Server that manages the load balancing of the Game State Server

Dispatcher. Handles login and hand off of players to the Game State Servers

ZAC. Zona Admin Control

GGS. Handles all text communication between clients that are members of Guilds

Messaging Server. This handles all of the low level messaging between the servers and the
clients

Zona Admin. The GUI for administrative control of the Terazona servers

JMS. Java Messaging Service

JDBC. Java Database Connectivity

Character Entity Properties. The record containing all of the character data that is stored
in the database

Regions. Developer defined logical representation of areas within the game.

208 GLOSSARY

	Terazona Version 1.4.1 Developer Guide
	Contents
	Introduction
	Audience
	Document Conventions
	Special Message Conventions
	Menu Conventions
	Mouse Conventions

	Additional Help

	List Of Figures

	Part I • Overview
	Chapter 1 • Terazona Architecture
	Terazona Game Platform Functions
	Terazona Components
	Game State Servers
	Game Guild Servers
	Sphere Server
	ZAC Server
	Dispatcher Server
	Authentication Server
	NPC Server
	Auditing Server
	Message Server
	Zona Administrator Application
	Zona Modeler
	The C++ Client API
	Game Server Plugin API - GSAPI

	Chapter 2 • MMOG Game Design and Data Flow
	MMOG Concepts
	MMOG Network Architecture

	Chapter 3 • Player Management
	Player Interaction Within Terazona

	Chapter 4 • Character Management
	Character Interaction Within Terazona

	Chapter 5 • Game State Validation
	Understanding Game State Validation

	Chapter 6 • Entity and NPC Management
	The NPC Server

	Chapter 7 • Environment Management
	Managing the Environment WIthin Terazona

	Chapter 8 • Chat Services
	Chatting Within Terazona
	Understanding MMOGs & Chat

	Describing Chat
	Explaining Sphere Chat
	Whisper
	Emotes
	Auditing

	Explaining Game Guild Chat
	Persistent Membership
	Persistent Messages
	Moderators
	Public and Private Guilds

	Extended Guild Features
	Using Game Guilds
	Implementing Game Guilds

	Filtering Chat Content

	Chapter 9 • Zona Modeler
	Why Zona Modeler?
	Understanding Zona Modeler
	Summarizing Zona Modeler

	Part II • API Analyses
	Chapter 10 • Client API Introduction
	Analyzing the Client API
	Understanding ZonaServices
	Understanding ZonaClientCharacter

	Understanding ChatCallBack
	Understanding GameGuildCallback
	Understanding EntityCallBack
	Understanding GameStateCallback

	Chapter 11 • GSAPI Introduction
	Understanding Game State Validation
	Implementing the GSAPI
	Understanding Game State Message Flow

	Chapter 12 • Regions And Movement API
	Analyzing Regions
	Locating Regions
	Analyzing Maps
	Load-Balancing with Maps

	Managing Movement
	Understanding the Sphere of Interest

	Managing Region Ownership
	Summarizing Regions
	Understanding the Master/Ghost Entity Relationship
	Updating Ghost Entity Objects

	Entering a Sphere and Exiting a Sphere
	Managing Maps
	Initializing Maps
	Managing Maps
	Checking Neighbors
	Monitoring Maps and Regions

	Publishing Data Using Functions
	Receiving Data Using Functions

	Chapter 13 • Physics and AI API
	Detecting Collisions and Simulating Physics
	Using Artificial Intelligence
	Managing Items

	Chapter 14 • NPC Controller API
	Managing Items
	Understanding the NPC Controller
	Creating the NPC Controller
	Managing Child Entities
	Tuning NPC Server Performance
	Managing NPC Servers

	Chapter 15 • Timers API
	Understanding Timer Events
	Using Entity Timers
	Using Region Timers
	Using GSS Timers
	Using World Timers

	Chapter 16 • Chat Client API
	Analyzing Chat Message Structure
	ChatMsg
	ChatMsgPtrVector
	ZonaGuildChatMsg

	Sending Chat
	Sending Guild Chat

	Receiving Chat
	Stopping Sphere Chat Monitoring

	Managing Guild Objects
	Using the Guild Object

	Managing Guilds
	Obtaining a Character’s Guild Memberships
	Creating a Guild
	Deleting a Guild

	Managing Guild Activity
	Ignoring Guild Activity

	Managing Guild Membership
	Sending Guild Invitations
	Receiving Guild Invitations
	Joining Guilds
	Leaving Guilds
	Receiving Guild Membership Updates
	Receiving Guild Moderator Data

	Moderating Guilds
	Receiving Guild Message Data
	Demonstrating Guilds
	Managing Persistent Messages
	Fetching Persistent Messages
	Deleting Persistent Messages

	Filtering Chat
	Understanding Chat Filtering
	Writing Chat Filter Directives
	Enabling Client-Side Filtering
	Disabling Client-Side Filtering
	Programming Client-Side Filtering

	Demonstrating Chat

	Chapter 17 • Chat Server API
	Understanding Chat Validation
	Understanding Chat Message Flow
	Implementing the CHATAPI Plugin
	Compiling the CHATAPI Plugin

	Managing Chat Validation
	Analyzing the Chat Validation Functions

	Understanding the Game Guild State Process
	State – Part of Guild
	State – Active in Guild
	State – Inactive in Guild
	State – Not Part of Guild
	Validating Guild Creation

	Filtering Server-Side Chat
	Auditing Chat

	Chapter 18 • Failover & Fault Tolerance
	Making Fault Tolerance and Failover Transparent

	Chapter 19 • Cheat Prevention
	Configuring the Cheat Prevention Interface

	Chapter 20 • Game State Records
	Analyzing Game State Records

	Part III • Developing With Terazona
	Chapter 21 • Development Environment
	Compiling the GSAPI Plugin and CAPI Executable
	Debugging the GSAPI Plugin
	Using DebugBreak()

	Setting up VC++
	Testing the Client
	Configuring the XML File

	Changing the Development Options
	Starting the Client

	Chapter 22 • Introducing Zona Modeler
	Introducing Zona Modeler
	Zona Modeler’s Components
	Understanding the Zona Modeler Architecture
	Examining Zona Models

	Using Zona Modeler
	Starting Zona Modeler UI

	Understanding Zona Modeler Input and Output
	Examining the Zona Modeler Inputs
	Examining the Zona Modeler Outputs

	Deploying Zona Modeler Objects
	Deploying the Server-Side Zona Modeler Output
	Compiling the Client-Side Zona Modeler Output
	Using the Zona Modeler Class IDs

	Chapter 23 • Introducing the Zona Modeler UI
	Introducing the Zona Modeler UI
	Using the Zona Modeler UI
	Using the ZM UI Console

	Using the Model File
	Saving Your Model File
	Configuring Your Model File
	Changing the Model File Name
	Changing the Model Configuration File Reference
	Changing the Project Root Directory
	Changing the Game and Audit Database Configuration

	Renaming or Copying Your Model File

	Creating Model Entities
	Adding a Character Entity
	Adding a Child Entity
	Adding a Guild Entity

	Designing Model Entities
	Examining the Entity Attributes
	Examining the Entity Property Attributes
	Displaying Entity Property Attributes
	Examining the Entity Property Elements
	Displaying Entity Property Elements
	Adding Entity Property Elements
	Examining Entity Property Element Attributes
	Modifying Entity Property Element Attributes

	Compiling Model Entities
	Running Zona Modeler

	Chapter 24 • Character Entity Object
	Examining the Character Entity Object
	Understanding the Character Entity Properties

	Managing the Character Properties
	Managing the Public Properties
	Managing the Private Properties
	Managing the System Properties

	Updating the Character Properties

	Chapter 25 • Simple Client Creation
	Creating a Simple Terazona C++ Client
	Tracker Client
	Reviewing the code

	Instantiating ZonaServices
	Logging In
	Understanding the GSS Event Sequence During Login
	Client calls the Login() function
	Dispatcher Reroutes Player to Least-Loaded GSS

	Managing the Character
	Getting the Characters
	Selecting the Character
	Entering the Character

	Managing the Game State
	Creating a GameState Callback
	Monitoring a GameState Callback
	Subscribing to GameState Updates
	Communicating with the Server

	Leaving a Game
	Exiting the Game World
	Logging Off

	Chapter 26 • Managing Players Using The Server
	Managing Server-Side Characters
	Entering the Game
	Authenticating the Player
	Placing the Character

	Exiting the Game (Logout)

	Chapter 27 • Managing Characters Using The Server
	Creating a Character
	Selecting a Character
	Modifying a Character
	Storing a Character
	Deleting a Character

	Chapter 28 • Simple Client-Server Demo Creation
	Using TileTest
	TileTest Components

	Reviewing the Code
	Programming the Client
	Creating a Character
	Modifying the Character
	Listening for Server Updates
	Managing the Client-Side Entities

	Programming the Server
	Managing the Server-side Entities
	Validating the Client Request

	Managing the Regions

	Glossary

