
Terazona 1.2 Migration Document

Terazona 1.1 to 1.2

Migration Guide

August 22, 2003

Page 1 of 25

Terazona 1.2 Migration Document

Table of Contents
Terazona 1.1 to 1.2 ... 1
Migration Guide.. 1
Summary... 3
New Installation Requirements for 1.2 ... 3
New Additions for 1.2 .. 4

Zona Modeler.. 4
Zona Modeler Architecture... 5
Zona Modeler Inputs & Outputs ... 7
Zona Modeler Run Time... 9
Zona Modeler Initialization .. 9
Zona Modeler Design Time .. 10
Zona Modeler User Interface .. 10
Zona Modeler Object Deployment ... 13

Game Guilds ... 15
Game Guild Structure ... 15
Game Guild Operations .. 16

Client API Changes... 18
ZonaServices.h Additions ... 18
ZonaServices.h Changes ... 18
GameStateManager.h Deletions ... 18
GameStateCallback.h Changes ... 19
ZonaClientEntity.h Additions ... 19
ZonaClientEntity.h Deletions ... 19
ZonaClientCharacter.h Deletions.. 20
ZonaClientEntity.h Changes ... 20

Game Server API Changes ... 20
ZonaGSValidate.h Changes.. 20

Game Server API Additions ... 21
GameGuildServiceInterface.h Additions.. 21
GameGuildCallback.h Additions.. 22
ZonaBaseGuild.h Additions.. 23
ZonaBaseGuild.h Property Attributes... 23
ZonaBaseGuild.h Inviter Attributes.. 24
ZonaClientGuildMembership.h Additions ... 24
ZonaBaseGuildMembership.h Additions ... 24
ZonaGuildChatMsg.h Additions... 25

Page 2 of 25

Terazona 1.2 Migration Document

 Summary
This document briefly describes the change made between the Terazona 1.1 Release and the
1.2 Release. There are several new core additions to the system as well as changes to the
API. These are the significant changes in the Terazona 1.2 Release:

• Zona Modeler – an XML-based rapid application development (RAD) tool for
creating bandwidth-optimized game objects within networked game architectures.
Zona Modeler auto-generates Java and C++ code for easy Client- and Server-side
integration and deployment.

• Game Guilds – Provide a set- or group-based approach to propagating Entity state
updates within Terazona. Previous Entity State Management (ESM) update functions
were based on spatial or local paradigms and enforced specific game play restrictions
on game developers. Group-based Entity state updates provide new ways to enhance
game playability and depth.

• User Administration –ZonaPass.exe has been deprecated. To create additional
users, use the %ZONA_HOME%\bin\createDemoUser.bat (Windows) or
$ZONA_HOME/bin/createDemoUser (Solaris/Linux) utility with usage as follows:

CreateDemoUser <user_name> <password> [<user_role> [<count>]]

• Auditing – Game State Auditing requires significant modifications. This
modification will not be completed for the Terazona 1.2.0 release. Therefore, Game
State Auditing is unavailable until a forthcoming patch release. Chat Server Auditing
still functions normally.

• API Updates – The C Application Program Interface (CAPI) and Game Server API
(GSAPI) have been updated to provide new functionality, deprecate some outdated
functionality, and to simplify some procedures. In particular, the old network object
model consisted of:
1. Public Display Properties
2. Public State Properties
3. Private Properties
4. System Properties

• This has been simplified. The new model uses three properties:

1. Public Properties
2. Private Properties
3. System Properties

New Installation Requirements for 1.2
Because of the integration of Zona Modeler into the Terazona system, Java J2SE 1.4.2 JDK
must be installed on all development machines. Sun’s licensing requirements do not allow
Zona to bundle this with our Installer; you must download and deploy this package yourself.
Run-time execution requires only the Java J2SE 1.4.2 JRE.

Page 3 of 25

http://java.sun.com/j2se/1.4.1/download.html
http://java.sun.com/j2se/downloads.html
http://java.sun.com/j2se/downloads.html

Terazona 1.2 Migration Document

New Additions for 1.2
Zona Modeler

Zona Modeler provides a rapid and comprehensive solution to the problem of creating and
optimizing networked game objects to communicate and update Entity states across
distributed game environments.

Previously, creating such network objects required programmatic development of data
structures (such as C++ structs) within the main body of game code. There were a number
of problems with this approach.

Game logic was intermingled with network game object declaration. Furthermore, there was
no central domain where network game objects could be defined and this created the
potential for redundancy and mismatch between NPC Server and GSS game code.

Zona Modeler enables Terazona developers and designers to separate network game object
development from game logic development. This decoupling also makes possible an
enhanced workflow during design-time where game developers work on game logic and
game designers work on game object design).

During run-time, Zona Modeler optimizes the bandwidth of the network messages required
to propagate Entity state updates. Before Zona Modeler, to update a single property attribute
of a game object, the Client would have sent a complete binary object (“blob”) across the
wires to the GSS. Each subscribed GSS would then have to extract the object from the blob,
identify the changed parameter, validate the change, and update its server-side game objects.

Configuring Clients and GSSs to send only the changed values for specific attributes (“entity
deltas”) required the explicit setting and clearing of dirty, or changed, property attributes.
Although this conserved bandwidth and reduced unnecessary messages, it was cumbersome.

Zona Modeler now handles all entity deltas transparently. Network game objects created or
modified within the Zona Modeler graphical user interface (ZMUI) generate bandwidth-
optimized C++ and Java code that can be compiled and deployed across the Terazona server
cluster and on Clients.

Page 4 of 25

Terazona 1.2 Migration Document

Zona Modeler Architecture
Zona Modeler is focused on the creation and modification of network objects. Terazona
games typically execute across large, possibly heterogeneous game server clusters. A key
component of any such distributed system is describing an efficient method of
communicating object state changes between different machines in the cluster.

This process of sending object states and object state changes between execution machines
across the “wire” (or network layer) within a distributed system is called marshalling (for
sending) and unmarshalling (for receiving). This is similar to the concept of serialization.

Within distributed systems, to perform marshalling and unmarshalling each execution
machine requires various meta-object support data commonly known as interfaces, skeletons,
and stubs. Zona Modeler creates these for you during design-time.

A Terazona application can now be represented by a 3-level architecture. The base level,
ZMO, handles network game objects and is transparent to game developers and game
designers. Terazona developers interact primarily with the middle layer, ZAF, that handles
in-game object execution and management. The final layer, GDO, transparently handles in-
game object instantiation.

Each data object layer talks to an associated layer-specific Controller object that provides the
following services:

1. Object-Relational Mapping
2. Messaging
3. Validation

Zona Modeler abstracts the network game object layer below the Zona Application
Framework (ZAF) game execution layer. To manipulate ZAF, you use the classic CAPI and
GSAPI functions. Using the 3-layer model, the new Terazona class hierarchy looks like this:

Page 5 of 25

Terazona 1.2 Migration Document

There are three fundamental base classes used when interacting with ZAF:
1. ZonaBaseEntity – forms the basis for the classic ZAF Entities, such as

ZonaClientEntities, ZonaServerEntities, Chat Guilds, and so on.
2. ZAF Base Guild – forms the basis for the new Game Guild objects.
3. ZAFAction - These are a new class of objects within Terazona. Actions create Game

State Messages that are not associated with specific Entities. They are lightweight and
transient, and not persisted to the GameDB or the AuditDB.

Page 6 of 25

Terazona 1.2 Migration Document

Zona Modeler Inputs & Outputs
Zona Modeler takes in three inputs. These are:

1. Zona Model Object Definition Schema – This is the XML-based model file created
using the ZMUI. This file contains element and attribute definitions as well as some
external information. This input object is referred to as D.

In the demo TrackerClient, for example, this object is stored in the file:
%ZONA_HOME%\samples\TrackerClient\TrackerSchema.xml (Windows)
$ZONA_HOME/samples/TrackerClient/TrackerSchema.xml (Solaris/Linux)

2. Zona Model Configuration – This is the XML-based environment configuration file
for the Zona Modeler network data objects. This contains information such as the
working directory and the database location for Zona Modeler objects (ZonaDB).
Note that although they can be located within the same database server, the ZonaDB
and the Game DB can be hosted on different machines. This input is referred to as C.

Although it’s possible to specify multiple database configurations for different Zona
Modeler projects, the default Terazona installation uses a single file:
%ZONA_HOME%\config\ZonaModelerConfig.xml (Windows)
$ZONA_HOME/config/ZonaModelerConfig.xml (Solaris/Linux)

3. Audit Model Configuration – This is the XML-based environment configuration file
for the audited Zona Modeler network data objects. This contains information such as
the working directory and the database location for audited Zona Modeler objects
(AuditDB). Note that although they can be located within the same database server,
the ZonaDB, the Game DB, and the AuditDB can be hosted on different machines.
This input is referred to as CA.

During its compile phase, Zona Modeler combines all three inputs to derive specific object
representations suitable for deployment across Terazona. Specifically, Zona Modeler outputs
C++ and Java code definitions for three Data Objects:

1. DS – This is the server-side view of the D data object. This will encapsulate the
System, Public, and Private Properties of specific data object instances.

2. DC – This is the client-side view of the D data object. This will encapsulate the
Public, and Private Properties of specific data object instances.

3. DA – This is the audit view of the D data object. This will encapsulate those System,
Public, and Private Properties of specific data object instances designated for auditing
within CA.

Zona Modeler also produces associated support and definition files. These are:

1. A compiled version of DS, for deployment across all Game State Servers (GSSs).
2. A SQL definition required for Zona data object persistence. This is called DSQL.
3. A database-specific schema version of XX. You can chose the database within the

Zona Modeler UI.

Page 7 of 25

Terazona 1.2 Migration Document

4. An XML-based MetaData file that contains the static data necessary to instantiate
objects, for deployment across all GSSs.

5. An XML-based ObJectRelationalBridge (OJB) file that describes the object-relational
persistence mappings that link Zona Modeler objects with specific database columns.

Zona Modeler does not compile the C++ versions of DS, DC, or DA. If necessary, you can use
your C++ compiler of choice here.

This diagram illustrates the Zona Modeler inputs and outputs:

Page 8 of 25

Terazona 1.2 Migration Document

Zona Modeler Run Time
During run-time, Zona Modeler calculates how to most efficiently encode state changes for a
game object. It then marshals the network game objects across the wire “by value”, as
bitstream encodings of object state change deltas. Accompanying each bitstream it sends a
short int value that encodes a Class Id.

During run-time unmarshalling, the receiving machine uses Zona Modeler to extract the short
int Class Id value. Using this Class Id, it queries its deployed metadata and persistence
mapping information to extract or create an updated instance of that object. The new game
object state has thus been successfully sent across the network.

Zona Modeler Initialization
Following successful installation of Terazona, to begin developing with Zona Modeler you
must complete some initialization steps:

1. First you must create a suitable database repository to persist the Zona Modeler objects.

Execute this script:
%ZONA_HOME%\sql\mssql\createZonaSchema.bat host sa pass (Windows)
$ZONA_HOME/sql/mssql/createZonaSchema host sa pass (Solaris/Linux)

host – the hostname with the target database
sa – the database user with authority to create Tables in this database
pass – the password for the authorized user

This creates the database and makes a suitable USERDIRECTORY table.

2. Then you must initialize the demo applications. Within each sample project directory,
execute the setup.bat (Windows) or setup (Linux/Solaris) script. This will create
version-specific metadata and create any required user accounts by calling
createDemoUser. Modify the parameters to suit your development requirements.

3. Next you must build the sample applications. Within each sample project directory,

execute the MakeRelease.bat (Windows) or MakeRelease (Linux/Solaris) script.
For debugging, you can use the MakeDebug.bat (Windows) or MakeDebug
(Linux/Solaris) scripts.

4. Load the Zona Modeler UI. On Windows you can use the Start Menu icon. The line

command to load the Zona Modeler UI is:
%ZONA_HOME\bin\startZonaModeler.bat (Windows)
$ZONA_HOME/bin/startZonaModeler (Solaris/Linux)

Page 9 of 25

Terazona 1.2 Migration Document

Zona Modeler Design Time
Zona Modeler design time consists almost exclusively of interacting with the Zona Modeler
UI (ZMUI). This is a combined editor and Zona Modeler object compiler. During Zona
Modeler Design Time, game designers or developers use ZMUI to create or modify Game
XML file that describes all of the network game objects. Additionally, ZMUI creates or
modifies associated Game Configuration XML files that describe how the network game
objects are persisted, both for the Zona Modeler Database (ZMDB) and the Audit Database
(AuditDB).

Zona Modeler User Interface
All the design-time operations of Zona Modeler are automated through the Zona Modeler
User Interface (ZMUI). The ZMUI allows enables non-programmatic creation and
management of network game objects. Game designers can model game objects while game
developers work on game logic and designers produce sound and graphic assets.

On Windows within the Terazona Servers Start Menu there is a shortcut icon to start ZMUI.
You can also start ZMUI using this script:

%ZONA_HOME%\ZonaHome\bin\startZonaModeler.bat (Windows)
$ZONA_HOME/ZonaHome/bin/startZonaModeler (Solaris/Linux)

Within ZMUI, you create the Game Object Model file that defines the elements and
attributes of the network objects used by Terazona during your game.

You can edit the Zona Modeler configuration information:

Page 10 of 25

Terazona 1.2 Migration Document

You can create a new Game, that is, a “model”:

You can create new Entities:

Page 11 of 25

Terazona 1.2 Migration Document

You can add new Properties to your Entities:

Note that within ZMUI, the Child (DC) and Audit Entities (DA) do not show in the ZMUI,
because these are purely derived from the basic ZM data object (D) and are not user-editable.

And you can edit these new Properties:

Page 12 of 25

Terazona 1.2 Migration Document

Zona Modeler Object Deployment
Following successful execution of the ZonaModeler compile process, the following directory
contains all of the ZM output files, including DS, DC, and DA class files and metadata
information required for runtime:

%ZONA_HOME%\ext (Windows)
$ZONA_HOME/ext (Solaris/Linux)

The ZM output is stored in subdirectories as follows:

\ext Subdirectories Contents
classes Run-time server-side Java classes
metadata Run-time object instantiation information
ojb Run-time object-relational mapping information
src Object source code (C++, Java).

Relational table code (SQL)
debug First-time ZM model initialization data stored as

compressed archives. Useful for debugging and
support.

Server Deployment
1. Deploy the contents of the \ext directory onto all servers within the Terazona

cluster as follows:
%ZONA_HOME%\ext (Windows)
$ZONA_HOME/ext (Solaris/Linux)

2. Ensure that the \ext directory is referenced within each server’s Java CLASSPATH.
3. Build your Server plugin incorporating the generated C++ code (.h and .cpp) from:

Page 13 of 25

Terazona 1.2 Migration Document

a. %ZONA_HOME%\ext\src\cpp\server (Windows)
$ZONA_HOME/ext/src/cpp/server (Solaris/Linux)

b. %ZONA_HOME%\ext\src\cpp\common (Windows)
$ZONA_HOME/ext/src/cpp/common (Solaris/Linux)

Client Deployment
1) Build your Client executable incorporating the generated C++ code (.h and .cpp) from:

a. %ZONA_HOME%\ext\src\cpp\client (Windows)

$ZONA_HOME/ext/src/cpp/client (Solaris/Linux)
b. %ZONA_HOME%\ext\src\cpp\common (Windows)

$ZONA_HOME/ext/src/cpp/common (Solaris/Linux)
During compile-time, the metadata and object-relational data is stored within your
executable. As a result, these files do not require separate client-side deployment.

Page 14 of 25

Terazona 1.2 Migration Document

Game Guilds
Game Guilds enable game developers to group Entity state updates across the Terazona
cluster in terms of sets of characters or entities. Previously in Terazona, Entity state updates
were spatially based, in that Entities could update properties for those Master or Ghost
Entities that were in Regions defined as neighboring. Game Guilds avoid this spatial
limitation by allowing flexible Entity membership irrespective of in-game Region geography
or Entity location.

In terms of management and membership, Game Guilds are similar to the extant Chat Guilds.
The key difference is that while Characters and Entities within Chat Guilds can exchange
only text information, Characters and Entities within Game Guilds can exchange all Entity
state data with other members of the Game Guilds.

For example, Game Guilds enable game designers to specify an in-game “religion” or
“faction” that is aligned to a specific deity. In return for pledging allegiance to this deity,
member Characters can receive periodic or permanent alterations to their Character
Properties, such as an increase in “manna”. “luck”, “karma”, or any game-specific Character
attributes. They can also be used to cast a particular “spell” on all members of that Game
Guild.

Game Guilds can also be used for player-to-player messaging, but at this time Zona
recommends continuing to use the extant Chat Guild framework for this purpose. Game
Guilds are at an early stage of development and do not yet provide as much rigor and
extensibility for large-scale messaging as the Chat Guilds. Developers are strongly
discouraged from using Game Guild Chat functionality as a replacement for pure Chat
Guilds.

Game Guild Structure
This section describes the structure and composition of the Game Guild object.
Conceptually, Game Guilds object design borrows from the earlier Guild object design.

• Game Guilds can be transient or persistent.
• Additionally Game Guilds also have limited properties analogous to Chat Guilds.

(that is, possessing Inviter Attributes and Guild Properties).
1. PERSISTENT_MEMBERSHIP - The guild is persistent. That is, it is stored in the

Game Database (“ZonaDB”).
2. MEMBERS_CAN_POST_MSG - Members are allowed to post messages to the

Game Guild.
3. INV_MODERATOR - Moderator can invite other entities to join the Game Guild.
4. INV_MEMBER - Any guild member can invite other entities to join the Game

Guild.
• Unlike Chat Guilds, Game Guild messages are not persisted to the Game Database.
• There can be multiple moderators for a Game Guild.

Page 15 of 25

Terazona 1.2 Migration Document

Game Guild Operations

This section defines all the operations on Game Guilds. Operations include Guild
Management and Guild Messaging

Guild Management
The Game Guild management enable developers to provide a management framework for
players’ Characters to create and manage Game Guilds and game Guild memberships.

• Create Guild – Client can create a new Guild
• Delete Guild - Clients with proper permission can delete a guild.
• Join Guild – Clients with proper permission can join a specific guild.
• Leave Guild – Clients can leave a guild.
• Invite to Guild – Sends out specific invitations to invite a player to join a guild.
• Remove from Guild – Can be used to kick out players from a guild.
• Add / Remove Guild Moderator – Adds and removes moderators. A Game Guild

can have multiple moderators.
• Fetch Guilds –Asynchronously fetches the clients guilds by firing add guild

callbacks on the client. Because of the lack of the SELF_INVITER attribute in
Game Guilds, this function returns only those Game Guilds of which the calling
Character is already a member.

Guild Messaging
The primary purpose of Game Guilds is to send Game State Updates to all subscribed,
member Entities. You should use Chat Guilds to send plain text communications between
Entities.

• Send Guild Game State – Sends a Game State Message to a particular Game Guild.
These messages are not be distributed in the traditional Region-specific distribution,
but instead are broadcast only to the members of the Game Guild.

• Enter Guild –Activate a client within a Game Guild.
• Exit Guild – Deactivate a client within a Game Guild. As a consequence of player

logoff, that player’s Character exits all Game Guilds.
• Monitor Guild – Sets a callback handler for Game Guild events.
• Game Guild Callbacks

o On Member Enter Guild.
o On Member Exit Guild.
o On Guild Game State Message.
o On Add Guild.
o On Remove Guild.
o On Add Moderator.
o On Remove Moderator.
o On Guild Invite.
o On Guild Chat Message.
o On Game Guild Error Message.

• Guild Error messages – Errors in guild operation are reported asynchronously in the
form of error callbacks. The errors contain this data:I

Page 16 of 25

Terazona 1.2 Migration Document

o Information about the Game Guild operation.
o The Game Guild Id.
o The Id of the Entity that attempted to perform the operation.

Game Guilds API Outline:

Refer to following header files for Game Guild functionality:

Game Guild Services – GameGuildServiceInterface.h
Game Guild Callbacks – GameGuildCallback.h

The ZonaClient… header files declare the Client classes extending from
corresponding ZonaBase… classes. The client classes are empty implementations -
all the functions are defined in the Base class implementation. The
ZonaGuildChatMsg class is used by Clients to encapsulate chat messages.

Entity Behavior In Relation To Game Guilds

• Character Entities and Child Entities can belong to multiple Game Guilds, and can be
active in (that is, subscribed to updates from) all Game Guilds at any time.

• The Game Guild memberships of entities are retained during Child transfers.
• During Entity deletion, the Entity’s membership of all Game Guilds is cancelled and

the Entity is removed from all of its Game Guilds.
• When Guild members enter or exit the Game Guilds, then the other Game Guild

members receive a CAPI notification. The entering member will receive the same
notification for all other logged-in Game Guild members.

• Entity updates to a sphere are not automatically reflected in all the Game Guilds that
the Entity has membership.

• Forum Chat Guilds, private messages, and persistent messages should still be
provided using the Chat Server. The Chat services API is completely different from
the Game Guild Services and is subclassed completely differently, despite some
similar function names.

• The functionality and performance of Game Guilds will improve in forthcoming
releases of Terazona 1.2.x.

• Game Guild management has been incorporated into the GSS. The functionality can
be accessed by a new set of Game Guild APIs that have been built into CAPI.
Typically, the players create Game Guilds at runtime.

Page 17 of 25

Terazona 1.2 Migration Document

Client API Changes
ZonaServices.h Additions

Function Reason
int publishEntityPropertyUpdates
(int entityId)

Publish updated Properties to the Server for a
specific Entity.

int publishAllEntityProperties () Publish updated Properties to the Server for all
locally managed Entities, that is, all Entities within
that Client’s Zona Entity Manager (ZEM) cache.

ZonaServices.h Changes

Old New
IntVector& getModerators (int guildId) bool GetModerators

(int guildId, IntVector& moderators)
const wchar_t* getLoginName () const char* getLoginName() const
int monitorGameState() int monitorGameState (gamestatecallback*)
void setGameStateCallback
(GameStateCallback*callback)

int monitorEntityUpdates (entitycallback*)

GameStateManager.h Deletions
The entire GameStateManager queue management class has been removed because the new
CAPI autoupdate functionality replaces and supersedes the old GameStateManager functions.

Function Reason
GameStateManager
(int maxSize=
GAMESTATE_MANAGER_MAX_MSG)

Replaced and superseded.

virtual ~GameStateManager () Replaced and superseded.
void pushGameState
(int entityId, char* data, short dataSize)

Replaced and superseded.

bool popGameState
(int* entityId, char*& data, short* dataSize)

Replaced and superseded.

int queSize () Replaced and superseded.

Page 18 of 25

Terazona 1.2 Migration Document

GameStateCallback.h Changes

Function Reason
virtual void onPlayerReset
(int resetAction, int resetReason)

Moved to Callback::onNotifyPlayerReset().

ZonaClientEntity.h Additions

Function Reason
int publish() Because Zona Modeler now tracks altered property

data, when you request a publish (), the Terazona
Client sends all Entity property updates to the server.
This is a convenience method that actually calls
ZonaServices::
publishEntityPropertyUpdates(entityId).

ZonaClientEntity.h Deletions

Function Reason
void setPublicDisplayPropertyDirty () Zona Modeler now tracks altered property data. You

do not need to explicitly set “dirty” flags. You
request the Client publishes updated property data to
the Server Plugin by calling
ZonaClientEntity::publish().

void setPublicStatePropertyDirty () Zona Modeler now tracks altered property data. You
do not need to explicitly set “dirty” flags. You
request the Client publishes updated property data to
the Server Plugin by calling
ZonaClientEntity::publish().

void setPrivatePropertyDirty () Zona Modeler now tracks altered property data. You
do not need to explicitly set “dirty” flags. You
request the Client publishes updated property data to
the Server Plugin by calling
ZonaClientEntity::publish().

copyFromZO (ZonaObject*zo) This was for internal use and is no longer required.
copyToZonaObject (ZonaObject*zo) This was for internal use and is no longer required.

Page 19 of 25

Terazona 1.2 Migration Document

ZonaClientCharacter.h Deletions

Function Reason
void copyFromGC
(GameCharacter*gc)

This is no longer required.

ZonaClientEntity.h Changes

Old New
int publish() Because Zona Modeler now tracks altered property

data, when you request a publish (), the Terazona
Client sends all Entity property updates to the server.
This is a convenience method that actually calls
ZonaServices::
publishEntityPropertyUpdates(entityId).

Game Server API Changes

ZonaGSValidate.h Changes

Old New
void onValidateEntityPropertyUpdate
(ZonaEntity* entity, int propertyFlag,
byte* property, short size)

bool onValidateEntityPropertyUpdate
(ZonaServerEntity* entity,
ZonaServerEntity* previousEntity)

Page 20 of 25

Terazona 1.2 Migration Document

Game Server API Additions
GameGuildServiceInterface.h Additions

Function Purpose
GameGuildService (ZonaClient* aClient) Constructor
virtual ~GameGuildService() Destructor
void createGuild
(ZonaClientGuild* guild, int entityId)

Creates a new Guild in the game

void deleteGuild
(ZonaClientGuild* guild, int entityId)

Deletes a specified Game Guild

void requestMemberGuilds (int entityId) Asynchronous request to fetch Game
Guild memberships for a specified
Entity

void joinGuild (int guildId, int entityId) Request to join the specified Game
Guild

void leaveGuild (int guildId, int entityId) Request to leave the specified Game
Guild

void enterGuild (int guildId, int entityId) Request to enter the specified Game
Guild

void exitGuild (int guildId, int entityId) Request to exit the specified Game
Guild

void inviteMember
(int guildId, int inviteeId, int inviterId)

Request to invite specified member to
specified Game Guild

void removeMember
(int guildId, int targetEntityId, int memberId)

Request to remove existing, specified
member from specified Game Guild.

void monitorGuildMessage
(GameGuildCallback* guildCallback)

Set a callback for listening to Game
Guild messages

void stopMonitorGuildMessage() Stop listening to Game Guild messages
void addGuildModerator
(int guildId, int entityId, int moderatorEntityId)

Request to add a moderator to a Game
Guild

void removeGuildModerator
(int guildId, int entityId, int moderatorEntityId)

Request to remove a moderator from a
Game Guild

void sendChatMessage
(ZonaGuildChatMsg* aMsg)

Send a chat message to the Game Guild
members

void sendGuildGameState
(int guildId, int entityId, char* state, int stateLen)

Send a Game State message to the
Game Guild members

ZonaClientGuild* getGameGuild (int guildId) Fetch an instance of a Game Guild

Page 21 of 25

Terazona 1.2 Migration Document

GameGuildCallback.h Additions
Function Purpose

GameGuildCallback() Constructor
~GameGuildCallback() Destructor
virtual void onAddGuild
(ZonaClientGuild* guild)

Called by ZonaServices in response to a request to
fetch member Game Guilds, or if an invite has
been sent by another member

virtual void onRemoveGuild
(ZonaClientGuild* guild)

Called by ZonaServices when any of following
actions occur:
The Game Guild is removed by a moderator
This member is removed by moderator
The member exits or leaves the Game Guild

virtual void onMemberEnterGuild
(ZonaClientGuildMembership* aShip)

Called by ZonaServices when a member enters a
Game Guild

virtual void onMemberExitGuild
(ZonaClientGuildMembership* aShip)

Called by ZonaServices when member exits a
Game Guild

virtual void onAddModerator
(int guildId, int moderatorId)

Called by ZonaServices when a member is set as a
moderator

virtual void onRemoveModerator
(int guildId, int moderatorId)

Called by ZonaServices when a member is
removed as a moderator

virtual void onGuildInvite
(int guildId, int inviterId, int inviteeId)

Called by ZonaServices when a member sends a
Game Guild invite to this member

virtual void onGuildGameState
(int guildId, char* state,
int stateLength, int entityId)

Called by ZonaServices when a member sends a
Game Guild Game State Message

virtual void onGuildChatMessage
(ZonaGuildChatMsg* msg)

Called by ZonaServices when a member posts a
Game Guild Chat Message

virtual void onGuildErrorMessage
(int errorId, int guildId,
int operationId, int entityId)

Called by ZonaServices when a user action results
in an error condition

Page 22 of 25

Terazona 1.2 Migration Document

ZonaBaseGuild.h Additions
Function Purpose

ZonaClientGuild Constructor
virtual ~ZonaClientGuild() Destructor
virtual int getPropertyAttributes() Get the Game Guild’s Property attributes
virtual int getInviterAttributes() Get the Game Guild’s Inviter attributes
virtual int getGuildId() Get the Game Guild’s Attributes
virtual char* getGuildName Get the Game Guild’s Name
virtual void setPropertyAttributes (int attr) Set the Game Guild’s Property attributes
virtual void setInviterAttributes (int att) Set the Game Guild’s Inviter attributes
virtual void setGuildName (char* name) Set the Game Guild’s Name
virtual void setGuildId (int id) Set the Game Guild’s Id
ZonaBaseGuildMembershipMap*
getMemberMap()

Fetch the Game Guild Membership Map

ZonaBaseGuildMembership*
getMember (int memberId)

Fetch the Game Guild membership of a
specified member

bool isMember(int entityId) Utility function to check if an Entity is
member of this Game Guild

bool isPersistable() Utility function. Checks for Persistable Game
Guild Property attribute

bool canMembersPostMessages() Utility function. Checks if members can post
messages to the Game Guild.

bool isMemberInvite() Utility function. Checks if members can
invite other members to join the Game Guild.

bool isModeratorInvite() Utility function. Checks if moderators can
invite other members to join the Game Guild.

static ZonaBaseGuild*
createClientClassFromId (short classId)

Internal ZONA use. Required by CAPI. May
be deprecated. PLEASE DO NOT USE.

ZonaBaseGuildMembership* addMember
(ZonaBaseGuildMembership* mShip)

Internal ZONA use. Required by CAPI. May
be deprecated. PLEASE DO NOT USE.

void removeMember (int memberId) Internal ZONA use. Required by CAPI. May
be deprecated. PLEASE DO NOT USE.

ZonaBaseGuild.h Property Attributes
Attribute Purpose

PERSISTENT_MEMBERSHIP Game Guild and Memberships should be persisted to
GameDB. If not set, then the Game Guild will be treated
as transient

MEMBERS_CAN_POST_MSG Members can actively send messages to the Game Guild

Page 23 of 25

Terazona 1.2 Migration Document

ZonaBaseGuild.h Inviter Attributes
Attribute Purpose

INV_MODERATOR Moderators can invite members to join the Game Guild
INV_MEMBER Members can invite other members to join the Game

Guild

ZonaClientGuildMembership.h Additions
Function Purpose

ZonaClientGuildMembership () Constructor
virtual ~ZonaClientGuildMembership () Destructor

ZonaBaseGuildMembership.h Additions
Function Purpose

ZonaBaseGuildMembership () Constructor
virtual ~ZonaBaseGuildMembership () Destructor
virtual int getMemberId () Fetch this member’s EntityId
virtual int getGuildId () Fetch this member’s Game Guild Id
virtual bool isModerator () Check if member is a moderator
virtual short getMemberClassId () Fetch this member’s Class Id
virtual short getGuildClassId () Fetch this member’s Game Guild’s Class Id
virtual void setMemberId (int value) Set the member’s Entity Id in the

GuildMembership object that encapsulates the
association between a Game Guild and an Entity

virtual void setGuildId (int value) Set this member’s Game Guild Id
virtual void setMemberClassId
(short value)

Set this member’s Class Id (that is, the
ZonaModeler class identifier for the Member’s
Entity Class Id

virtual void setGuildClassId
(short value)

Set this member’s Game Guild’s Class Id (that
is, the ZonaModeler class identifier for the
associated Game Guild)

virtual void setIsModerator (bool value) Set this member’s moderator status
static ZonaBaseGuildMembership*
createNewClientInstance()

Internal ZONA use. Required by CAPI. May be
deprecated. PLEASE DO NOT USE.

Page 24 of 25

Terazona 1.2 Migration Document

Page 25 of 25

ZonaGuildChatMsg.h Additions
Function Purpose

ZonaGuildChatMsg
(int guildId, int senderId, char* subject,
int subLen, char* body, int bodyLen)

Constructor

virtual ~ZonaGuildChatMsg () Destructor
int getGuildId () Get the Game Guild Id from the message
int getSenderEntityId () Get the sender’s Entity Id from the message
int getSubjectLength () Get the message’s Subject data length
int getBodyLength () Get the message’s Body data length
char* getSubject () Get a pointer to the message’s Subject data
char* getBody () Get a pointer to the message’s Body data

	Terazona 1.1 to 1.2 Migration Guide
	Summary
	New Installation Requirements for 1.2
	New Additions for 1.2
	Zona Modeler
	Zona Modeler Architecture
	Zona Modeler Inputs & Outputs
	Zona Modeler Run Time
	Zona Modeler Initialization
	Zona Modeler Design Time
	Zona Modeler User Interface
	Zona Modeler Object Deployment
	Server Deployment
	Client Deployment

	Game Guilds
	Game Guild Structure
	Game Guild Operations
	Guild Management
	Guild Messaging
	Game Guilds API Outline:
	Entity Behavior In Relation To Game Guilds

	Client API Changes
	ZonaServices.h Additions
	ZonaServices.h Changes
	GameStateManager.h Deletions
	GameStateCallback.h Changes
	ZonaClientEntity.h Additions
	ZonaClientEntity.h Deletions
	ZonaClientCharacter.h Deletions
	ZonaClientEntity.h Changes

	Game Server API Changes
	ZonaGSValidate.h Changes

	Game Server API Additions
	GameGuildServiceInterface.h Additions
	GameGuildCallback.h Additions
	ZonaBaseGuild.h Additions
	ZonaBaseGuild.h Property Attributes
	ZonaBaseGuild.h Inviter Attributes
	ZonaClientGuildMembership.h Additions
	ZonaBaseGuildMembership.h Additions
	ZonaGuildChatMsg.h Additions

