Making Software Work Together”

OrbixOTS 3.0
Performance

White Paper

IONA Technologies

Making Software Work Together”

Orbix is a Registered Trademark of IONA Technologies PLC.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no
warranty of any kind to this material including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or
by any means, photocopying, recording or otherwise, without prior written consent of IONA
Technologies PLC. No third party intellectual property right liability is assumed with respect to the use
of the information contained herein. IONA Technologies PLC assumes no responsibility for errors or
omissions contained in this white paper. This publication and features described herein are subject to
change without notice.

Copyright © 2000 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this white paper are covered by the trademarks, service marks, or
product names as designated by the companies that market those products.

M2382

Making Software Work Together”

Summary

Applications written using OrbixOTS (the implementation of the OMG CORBA
Object Transaction Service from IONA Technologies) benefit from the
important transactional ACID properties of atomicity, consistency, isolation,
and durability. However, these benefits come at the cost of reduced
performance. This guide explains why these costs arise and discusses the
options available when using OrbixOTS to achieve maximum performance.

Making Software Work Together”

Making Software Work Together”

Table of Contents

SUIMIMAIY ..ttt oo e et ettt e e e e e e e e ettt e e e e e e e eeabba e e e aaaaeenes iii
INEFOAUCTION.eeiiiiiiiiiiiiiiie e 1
RECOVEIY LOQGING .+ttt ettt e e e e et e e e e e e e abba e as 2
Raw DisK Partitionsccooviiiiiiiiii 3
Group COmMMIL FEAIUIEccoiiiiiiiiei et eeeaaans 3
Reducing the Amount of Data Logged.............coiiiiiiiiiiiiiiiieeiiieii e 4
MIFTOFING LOOS ..ottt ettt e e e et ettt e e e e e e e e e abba e e e e aaaeenes 5
USE Of LOQQING SEIVEIS....uuiiiiiiieiiiitie ettt e e et eaaeeees 5
TwO-Phase COmMMIt MESSAQES.uuuiiieeiieiiiiiie e ettt e e e eeeeaanns 6
Reduce the Number of Transaction PartiCipants.............ccoooeeivieiiiiiniineeneeenns 6
Read-Only PartiCiPantscooiiiiiiiiieee e a e 7
Dynamic XA ReQISLratioNoouuuuuiiiiiaiiieiiiie e a e 7
One-Phase Commit XA Optimizationoooeiiiiiiiiiniieeeeeeeii e 8
Propagation CONIEXL........coeeuuiuiiii et e e e e e 9
RedUCING CONEXE SIZE....uuuiiiieiiieii e 10
Reducing Use of the Propagation Context............oooeuiiiiiiiiiiiiieeiiceeiiiieeeen 10
Data ISOIALIONuuvevieiiiiiieeeeeeiibe bbb 13
MISCEIIANEOUS ... ettt erenee 14
User Request Thread POOI ..o 14
Caching Resource Manager Data...........ccuuuuuiiiiiaiiiiiiiiiiieee et 15
Do Not Waiit for HEUNSHICS.........cooviiiiiiiiii 16
Use of the Current PSeUdO ODJECT.........ccoiiiiiiiiiiiiie e 17
OUL-0Of-BaNd MESSAQES. ... eeieeeiiiiiei ettt e e e ee e e aaeeees 17

Making Software Work Together”

Configuration Variables...........coo 17
Performance TIPS SUMMAIYccoiiiiiiiiii et 19
FUrther REAAING.ot 21
CONACE DELAIIS ... 22

Vi

Making Software Work Together”

Introduction

OrbixOTS is IONA Technologies’ implementation of the OMG CORBA Object
Transaction Service. It provides application developers with the well-known
benefits of the ACID transactional properties of atomicity, consistency,
isolation, and durability. However, these benefits come at the cost of reduced
performance. This guide explains why these costs arise and discusses your
options for achieving maximum performance. These options relate to
application design, and system environment and configuration issues. The
focus is mainly on increasing throughput (that is, the number of transactions
per second). Some response time issues are also covered.

In general there are four areas where the use of transactions affect application
performance. These areas are:

1. Recovery logging.

2. Two-phase commit messages.
3. Propagation context.

4. Data isolation.

This white paper examines each of these areas in turn. Some miscellaneous
areas are also examined, along with related configuration variables. This white
paper concludes with a quick summary of some key performance tips.

This document assumes knowledge of CORBA, the CORBA Object
Transaction Service, the CORBA Concurrency Control Service, the X/OPEN
XA specification, and OrbixOTS.

Making Software Work Together”

Recovery Logging

The durability property of transactions is achieved by saving information to
stable storage at key points in the lifetime of a transaction. This is necessary
so that the coordinator and all participants maintain a consistent view of the
transaction in spite of any failures that may occur. For example, in the two-
phase commit protocol, once the coordinator has made the decision to commit,
a record of this fact must be forced to stable storage before the protocol can
continue. If the process or the machine hosting the coordinator crashes before
all participants are notified of the commit decision, the messages can be
replayed during recovery by examining this record.

Writing to stable storage can be orders of magnitude slower than normal
processing, making the durability property one of the most expensive parts of a
transaction. All records do not need to be forced to stable storage, however.
For example, a participant’s response to a commit message does not need to
be forced—a failure will only result in a redundant replaying of the commit
message.

OrbixOTS implements durability using a transaction log. Logically the
transaction log can be viewed as an append-only storage device that stores
transaction records sequentially. In reality it is implemented as a finite size file
(typically 8 megabytes) in which unused records are removed to prevent the
log from filling up.

The transaction log can be composed of several files or partitions. It can also
be mirrored to prevent loss of information due to media failures. For a mirrored
log, the data records are written twice: once to the normal log, and once to the
mirror log. In OrbixOTS it is also possible for one server to use the transaction
log of another OrbixOTS server.

From a performance point of view, a number of steps can be taken to reduce
the overheads of logging:

* Always use raw disk partitions rather than normal files for log files.

» Take advantage of the group commit feature to increase disk 1/0
throughput.

* Reduce the amount of data logged by careful application design.
* Do not mirror the transaction log.

* Do not use the remote logging feature.

Making Software Work Together”

Raw Disk Partitions

On systems where they are supported (for example, Solaris and HP-UX), using
raw disk partitions instead of normal files for the transaction log results in a
dramatic increase in performance. By using a raw disk partition, OrbixOTS
bypasses the operating system’s file system structures and associated
overheads. In some situations, simply switching to using a raw disk partition
can triple the transaction throughput.

Using raw disk partitions is no different from using normal files. Take care that
the raw version of the partition is used and not the buffered version, and that
the partition is not allocated to a file system. For example, the following code

shows how an OrbixOTS server is initialized to use the raw disk partition
dev/rdsk/ cOt 10d0s2:

/'l C++ (O bi xOTS servers only)
/1 Error handling omtted for clarity.

i nt

mai n()

{

/...

Or bi xOTS: : Server _var ots = OrbixOTS:: Server::|IT create();

ot s- >l ogDevi ce(“/ dev/rdsk/ c0Ot 10d0s2");
ots->restartFile(“/local 1/tlog.restart”);
ots->mrrorRestartFile(“/local 2/tlog.mrror”);
I

ots->init();

}

On systems where raw disk partitions are not available or practical, it is
important that the transaction log resides on a fast local disk.

Group Commit Feature

In a busy transactional system the transaction log can quickly become a
performance bottleneck. As each transaction commits, it must wait for all
currently committing transactions to complete their disk writes before it can
proceed. Because disk writes take so long relative to other activities, it is better
to group several disk writes together. The group commit feature of OrbixOTS
can dramatically increase the transaction throughput.

Making Software Work Together”

As an analogy, consider the situation where a number of people are out for a
meal together in a restaurant. If the waiter takes each person’s order
separately, and the chef cooks the meals sequentially, the person whose order
was taken first will be served quickly, but the second customer will be waiting
twice as long, the third customer will be waiting three times as long, and so on.
On the other hand, if the waiter takes an order from everyone at the table at
the same time, and the chef is able to prepare the meals together, everyone
will receive their food at about the same time. The first customer may have to
wait a little longer but the time taken to serve the remaining customers is
dramatically reduced.

The group commit feature is automatically available in OrbixOTS. Application
programmers must, however, ensure that their servers use concurrent
transactions by using threads as much as possible and specifying a value of
concurrent to the Or bi xOTS: : Server: i npl _i s_r eady() operation. The
latter permits concurrent requests from different transactions by using a thread
pool for user requests.

The user request thread pool uses a high watermark/low watermark scheme to
control the maximum and minimum number of threads. For more information
see “User Request Thread Pool” on page 16.

By designing your applications to exploit the group commit feature in
OrbixOTS several times, you can increase the transaction throughput. This is
very useful when you are forced to use slow disks or when normal files have to
be used instead of raw disk partitions.

Reducing the Amount of Data Logged

One obvious way of speeding up disk writes is to reduce the amount of data
that needs to be written. By careful application design you can decrease the
amount of data that OrbixOTS writes to stable storage with each transaction.
One or more of the following is recommended:

* Reduce the number of servers involved in a transaction.
* Reduce the number of XA resource managers registered with servers.
* Reduce the number of resource objects registered with transactions.

For example, if your application implements recoverable objects by using the
CosTransacti ons: : Resour ce interface, it is better from a logging point of
view to register a single resource object for all modified recoverable objects,
rather than using one resource object for each recoverable object.

Making Software Work Together”

Mirroring Logs

When the transaction log is mirrored (using the ot sadni n tool), each write to
the log is performed serially to each of the mirrors. This ensures that at least
one of the logs contains the correct information. The time taken for each write
is, however, proportional to the number of mirrors used. Therefore, to increase
both response time and throughput, the number of mirrors should be
minimized. In most situations one mirror is enough.

Use of Logging Servers

It is possible to minimize the number of transaction logs in a system by making
one or more OrbixOTS C++ server use another OrbixOTS C++ server’s log, by
using the Or bi xOTS: : Server: : | ogSer ver () operation. For example, the
following code initializes a server to use the transaction log of the ot st f
transaction factory server.

/'l C++ (O bi xOTS servers only)
/1 Error handling omtted for clarity.

i nt

mai n()

{

Or bi xOTS: : Server _var ots = Orbi xOTS:: Server::|IT create();
ot s- >l ogServer (“O bi xOTS_Transacti onFactory”);

/...

ots->init();

I

}

Although this feature can be useful, it increases the already high cost of
logging transactional records.

Making Software Work Together”

Two-Phase Commit Messages

The atomicity property of distributed transactions is achieved using the
standard two-phase commit protocol. This protocol is designed so that all
participants in a distributed transaction agree on the final outcome of the
transaction, even in the event of failures affecting the participants, the
coordinator, and the communication paths.

In the two-phase commit protocol, a “prepare” message is first sent to each
participant. Each participant votes on whether to commit or rollback the
transaction. The coordinator gathers all votes and makes a final irrevocable
decision to commit or rollback the transaction. Therefore, a transaction with n
participants typically requires 2 X n messages to successfully commit. This
means that the two-phase commit protocol, along with logging for recovery, is
one of the most expensive parts of transaction management.

The following steps can be taken to reduce the costs associated with the two-
phase commit protocol:

* Reduce the number of transaction participants.
* Make use of the read-only vote to the prepare request.
* Use the one-phase commit XA optimization.

* Use dynamic XA resource manager registration.

Reduce the Number of Transaction Participants

Because the number of round-trip messages sent during the two-phase commit
protocol is proportional to the number of participants in a transaction, reducing
the number of participants will reduce the overhead of committing that
transaction. This is particularly relevant if a participant is separated from the
coordinator by a slow communications line.

In OrbixOTS a participant can be one of the following:

» Aregistered XA resource managetr.

* Aregistered resource object. This can be either due to an application or an
interposed transaction to support interoperability between different OTS

implementations.

* Another recoverable OrbixOTS server visited during the transaction.

Making Software Work Together”

If you are designing an application, the cost of the two-phase commit protocol
can be minimized by reducing the scope of transactions to involve only a few
servers (preferably only one), and reducing the number of resource objects
registered with transactions.

Transactional Requests

OrbixOTS C+ +
Recoverable
Server

OrbixOTS C+ +
Transactional
Server

OrbixOTS C++
Client

\

Commit Protocol Messages

Figure 1—Optimized Commit Protocol

OrbixOTS can be optimized so that only relevant servers are involved in the
commit protocol. For example, consider the scenario shown in Figure 1, where
a client makes transactional invocations on an OrbixOTS server, which in turn
makes a transactional invocation on a recoverable OrbixOTS server. The first
server is not recoverable because it does not have any registered XA resource
managers and does not register any resource objects with transactions. As a
result, when the client commits the transaction, the first server is not involved
in the commit protocol and OrbixOTS forwards the commit request to the
second recoverable server. In this scenario, the second server becomes the
transaction coordinator.

Read-Only Participants

If a participant does not modify or change the data, it does not need to be fully
involved in the two-phase commit protocol. For example, if an object
supporting the CosTr ansact i ons: : Resour ce interface returns Vot eReadOnl y
from the pr epar e() operation, the object is no longer involved in the
transaction, and the coordinator does not need to send a final commit or
rollback message.

Dynamic XA Registration

When an XA resource manager is registered with an OrbixOTS server, it is
normally included in all transactional activities. This is known as static

Making Software Work Together”

registration, and means that the resource manager is always involved in the
two-phase commit protocol, regardless of whether any data belonging to the
resource manager is accessed during a transaction. Statically registered
resource managers also have their xa_st art () and xa_end() functions called
at the start and end of transactional work, respectively.

OrbixOTS supports another form of XA registration called dynamic registration.
Here, the resource manager decides when it wants to become involved in a
transaction, if at all. If it wants to be involved in a transaction, it calls OrbixOTS
asking to become a participant. Otherwise, the resource manager is not
involved in the transaction and no prepare message is sent at commit time.

Dynamic XA registration is set using the flags in the xa_swi t ch_t structure
provided by the resource manager’s XA library. Refer to your resource
manager’s documentation for more information on this option.

One-Phase Commit XA Optimization

The X/Open XA specification includes an optional one-phase commit protocol
that can be used where there is only one active resource manager involved in
a transaction. This avoids using the two-phase commit protocol and reduces
the amount of logging. This optimization feature is available in OrbixOTS C++
servers, under certain conditions, through the

t mxa_Set UsesOnl yLocal Xawer k() Encina Toolkit function. To turn on this
feature, use the following code after initializing OrbixOTS:

/'l C++ (O bi xOTS server only)

/1 Turn on one-phase commit/ XA optim zation.
tmka_status_t status;

status = tnxa_Set UsesOnl yLocal Xawor k(0,
TMXA_NEW TOP_LEVEL_TI DS,

TMXA ONLY_LOCAL_XA VORK) ;

if (status !'= TMXA_ SUCCESS)

{
/1 Error handling

}

Note that the one-phase commit/XA optimization can only be used if the
following two conditions are met:

1. All XA resource managers are registered with a single OrbixOTS server.

2. No CosTransact i ons: : Resour ce objects are registered with transactions.

Making Software Work Together”

Propagation Context

When an invocation is made on a transactional object (that is, an object that
supports the CosTrasact i ons: : Transact i onal Obj ect interface), additional
information is added to the request containing information about the
transaction. To support interoperability between different OTS
implementations, a standard CosTr ansacti ons: : Propagat i onCont ext
structure is used (see Figure 2), and the data is placed in a standard General
Inter-ORB Protocol (GIOP) service context.

/1 IDL (in CosTransactions nodul e)

struct otid_t

{

| ong formatl D,

| ong bqual _I engt h;
sequence <octet> tid;

b

struct Transldentity
{

Coor di nat or coord;
Term nator term
otid_t otid;

}s

struct Propagati onCont ext

{

unsi gned | ong ti neout;
Transldentity current;

sequence <Transldentity> parents;
any inplementation_specific_data;

b

Figure 2—Transaction Propagation Context

The cost of encoding and decoding the propagation context, and adding it to
each transactional invocation, can have an impact on transactional
performance.

Making Software Work Together”

Reducing Context Size

The size of a propagation context is most affected by the number of nested
transactions and the size of the i npl enment at i on_speci fi c_dat afield.
Nested transactions have an obvious affect because the propagation context
includes the identifier for all of the transaction’s parents (that is, the
sequence<Transl denti ty> par ent s field). Therefore, reducing the number
of nested transactions that are propagated directly, reduces the size of the
propagation context and the complexity of encoding and decoding the
propagation context.

The i mpl enent ati on_speci fi c_dat afield is more complex because it
contains low level information used by the Encina Toolkit. For transactions
created by OrbixOTS Java applications, this field is always empty. However,
when OrbixOTS C++ applications interact, the size of the field is affected by
the following:

* The number of servers visited by the transaction.

* The number of CosTransacti ons: : Resour ce objects registered with the
transaction.

Note that when OrbixOTS C++ applications interact, the full propagation
context is not used. Instead only the data contained in the

i mpl enent ati on_speci fi c_dat afield is exchanged using a proprietary GIOP
service context. This reduces the amount of data exchanged, and reduces the
time spent encoding and decoding the context. This optimization feature can
be disabled by setting the OrbixOTS configuration variable

OTS_NO_OPTI M ZE_PROPAGATI ONto TRUE. Interoperability with foreign OTS
implementations is not affected by this optimization feature.

Reducing Use of the Propagation Context

Designing your OTS applications to limit the number of times a transaction
must be propagated can increase performance. Limiting the number of servers
visited by the transaction and delaying the creation of transactions as late as
possible in the propagation achieves this. For example, if a client is only
performing one server operation per transaction, the transaction can be
created in the server to prevent unnecessary propagation.

Alternatively you can take advantage of the transaction policy feature in
OrbixOTS. Normally, an object is considered transactional if the IDL interface it
supports inherits from the CosTr ansact i ons: : Transact i onal Qbj ect
interface. Invoking on such an object always requires the sending of a
propagation context. However, in OrbixOTS you can specify that an object

10

Making Software Work Together”

allows a transaction. This means that a propagation context is sent only if there
is a current transaction.

As an example of using the allows policy, consider the following client code
that first makes a lodgement to a bank account and then transfers data
between two accounts:

/'l C++ (Orbi xOTS clients and servers)
/1 Error handling omtted for clarity.

TransAccount _var accl
TransAccount _var acc2

/1 Make a | odgenment (no client transaction required).
accl- >makelLodgenent (100. 00);

I

/'l Transfer funds between two accounts (this requires a
/'l transaction).
CosTransactions:: Current _var current = ...

current->begin();
accl->makelLodgenent (150. 00);
acc2->makeW t hdr awal (150. 00) ;
current->conm t (1);

Because the first lodgment only involves one operation, no transaction needs
to be created. However, the subsequent transfer involves two operations—a
lodgment and a withdrawal—and a transaction is required to ensure that ACID
properties are guaranteed for both accounts. This transaction is necessary
even if both accounts use the same database and the same server.

When using the allows policy, each server operation must check for the
existence of a transaction. If none is propagated, the operation must create a
new transaction in which the operation executes. For example, the
TransAccount : : makeLodgenent () operation might be coded as follows:

/'l C++ (O bi xOTS servers only)
/1 Error handling omtted for clarity.

voi d

TransAccount | npl : : makeLodgenent (
CORBA: : Fl oat anount,

CORBA: : Envi ronnent &

)

11

Making Software Work Together”

{

// Check to see if there is a current transaction.
/1

CosTransactions:: Current_var current = ...;

bool ean local _tran = fal se;

if (current->get_status() ==

CosTransacti ons: : St at usNoTransact i on)

{

/1 No transacti on was propagated so create one.

| ocal _tran = true;

current->begin();

}

/1 Do the | odgenent...

/1 If no transaction was propagated the locally created
transaction

/!l must be committed.
if (local_tran)

{
current->conm t (1);
}

}

Setting the allows policy on an object must be done in both the client and the
server. There are three ways to do this:

1. Use O bi xOTS: : set Obj ect Transact i onPol i cy() for the object reference.

2. Use O bi xOTS: : set I nterfaceTransacti onPol i cy() for the object
interface. This way all objects supporting the interface use the allows policy.

3. Use Or bi xOTS: : set Def aul t Transact i onPol i cy() so that all objects have
the allows policy by default.

For example, to set the allows policy for all objects supporting the
TransAccount interface the following code can be used:

/'l C++ (Orbi xOTS clients and servers)
O bi xOTS: : setl nterfaceTransacti onPol i cy(

“TransAccount”,
Or bi xOTS: : transacti onAl | owed) ;

12

Making Software Work Together”

Note also that the OTS 1.1 specification does not make it mandatory for a
propagation context to be sent in reply messages. OrbixOTS always returns a
context for transactional invocations between two OrbixOTS C++ applications,
but in other situations, such as for a Java client, a context is not returned
unless the OrbixOTS configuration variable OTS_ALWAYS_RETURN_CONTEXT is
set to TRUE.

Data Isolation

The isolation property of transactions ensures that changes made to shared
data by a transaction are not made visible to other transactions until the
transaction commits. The data access layer of the application cooperates with
OrbixOTS to provide the isolation property. For example, if your application
uses an XA database, the database typically supports the isolation property
using data locks.

Supporting isolation can reduce the amount of concurrency in an application,
particularly when many transactions compete for the same set of shared data.
To reduce the potential for conflicts, applications should be designed so that
transactions are of short duration. Each XA resource manager may have
options to further increase performance; refer to your resource manager’s
documentation for more details.

For pure CORBA OTS applications using CosTr ansact i ons: : Resour ce
objects, the best way of achieving data isolation is by using the lock-based
Object Concurrency Control Service (OCCS) that is supplied as part of
OrbixOTS.

14

6 —_
wv 5 N . .
S 4 4 Growing Growing Shrinking
E < 34 Phase Phase Phase Commt
2 o Rollback
& = Point
5

Figure 3—Strict and Non-Strict Two-Phase Locking

When using the OCCS, it is important that the two-phase locking protocol is
used. This means that once an application starts to release locks, no further
locks can be acquired. With two-phase locking, a transaction has a growing
phase in which locks are acquired, and a shrinking phase in which locks are
released.

13

Making Software Work Together”

Normally, strict two-phase locking is used where all locks are released together
at the end of a transaction. This is supported in the OCCS using the

drop_I ocks() operation. Strict two-phase locking provides the maximum
degree of isolation, but can restrict concurrency. An alternative strategy is non-
strict two-phase locking in which locks can be released earlier (see Figure 3).
This option is supported in the OCCS with the r el ease_| ock() operation.

If it is appropriate for your application, non-strict two-phase locking should be
used. However, releasing locks before a transaction has committed, makes
changes visible to other transactions. If the first transaction is rolled back,
these transactions must also be rolled back.

Miscellaneous

This section describes how to tune the user request thread pool and also
examines some miscellaneous performance areas not covered in previous
sections.

User Request Thread Pool

Each OrbixOTS C++ server provides a user request thread pool. This is most
useful when the server’s serialization mode is concurrent, because it allows
both concurrent transactions and concurrent requests.

The user request thread pool uses low and high watermarks to control the
number of active threads. Initially there is a single thread in the pool. As
concurrent requests enter the server, the number of threads increases up to a
maximum of the high watermark. Beyond this point the requests are queued
until a thread becomes free. As the number of concurrent requests decreases,
the number of threads in the pool also decreases to a minimum of the low
watermark. Figure 4 shows the number of threads and concurrent requests for
a thread pool with a low watermark of 5 and a high watermark of 10.

14

Making Software Work Together”

11 -
10
2 I A N LWM
g & HWM
2 ‘51] m— i ReqUeStS
% : # Threads
1
0

Figure 4—User Request Thread Pool

The low and high watermarks are controlled by the two OrbixOTS configuration
variables OTS_TPOOL_LWwWand OTS_TPOOL_HWMrespectively. When setting
these values, the low watermark should be set to the expected average load,
and the high watermark should be set to allow for the expected peak number of
concurrent requests. The default values are 5 and 10. Once the high
watermark is reached, requests are queued and this can lead to deadlock
depending on the nature of the application.

Normally when a user request thread is scheduled, it is dispatched
immediately. In certain circumstances, however, it is desirable to wait until
other active requests complete. For example, if the new request on behalf of a
transaction is competing for data locks with other requests working for other
transactions, waiting for the other requests to complete can prevent the new
request from blocking. This feature can be turned on by setting the
configuration variable OTS_DI SPATCH_YI ELDto TRUE (the default is FALSE).

There are also separate request thread pools for admin, logging and
transaction protocol messages. Each of these pools has a low watermark of 5
and a high watermark of 50 that cannot be changed. The transaction protocol
pool can be disabled by setting the OrbixOTS configuration variable
OTS_0OOB_SYNCHRONOUS to TRUE; see “Out-of-Band Messages” on page 19 for
more details on this configuration variable.

Caching Resource Manager Data
If you are using OrbixOTS in conjunction with an XA-compliant database, it is

often a good idea to provide a per-transaction cache in your application
servers. Depending on the nature of the application, this can reduce the

15

Making Software Work Together”

number of times the database is accessed in the course of a transaction.
Caching with XA resource managers is supported in OrbixOTS through the use
of the CosTr ansacti ons: : Synchroni zat i oninterface:

/1 IDL (in CosTransactions nodul e)

interface Synchronization : Transacti onal Obj ect
{

voi d

bef ore_conpl etion();

voi d

after_conpl eti on(
in Status s

)

1

To implement a per-transaction cache, an instance of an object supporting the
Synchroni zat i on interface is registered with the transaction. When the
transaction is committed, the bef or e_conpl et i on() operation is invoked
before the OTS attempts to interact with the XA resource manager to commit
the modifications. The bef or e_conpl eti on() operation only needs to flush
any modified entries in the cache to the resource manager. The

after_conpl eti on() operation is invoked after the transaction has committed
or rolled-back and the final status of the transaction is passed as an argument
to the operation.

Do Not Wait for Heuristics

When committing a transaction you have the choice of whether to wait for
heuristic outcomes or to return as soon as the coordinator has made its
decision on the outcome of the transaction. If your application does not support
heuristic outcomes, the response time can be increased by always ignoring
them when committing transactions:

/'l C++ (Orbi xOTS clients and servers)
/1 Error handling omtted for clarity.

CosTransactions:: Current _var current = ...
current->begin();

// Do transactional work...

// Commit without waiting for heuristics.
current->conm t (0);

16

Making Software Work Together”

Use of the Current Pseudo Object

The CosTransact i ons: : Current interface provides a means of associating
transactions with the current thread of control. The OrbixOTS implementation
of this interface provides efficient management of transactions by going
directly to the Encina Toolkit layer. This means that the CORBA objects
representing the Cont r ol , Coor di nat or, and Ter mi nat or interfaces are not
created until they are required. If possible you should avoid calling the
operations Current : : get _control () and
Current::get_transaction_nane() to avoid the creation of the CORBA
objects.

Out-of-Band Messages

OrbixOTS C++ clients and servers exchange messages as part of the commit,
rollback and recovery protocols. These messages are exchanged outside the
normal client-server application interaction and are termed out-of-band (OOB)
messages. Normally, each OOB message is first placed in a queue on both the
sending and receiving side before being processed by another thread. In
environments with a high transaction volume this increases the scalability and
performance of OTS applications. However, in certain environments it might
be better to avoid queuing these OOB messages. This can be done by setting
the OrbixOTS configuration variable OTS_0O0B_SYNCHRONOUS to TRUE.

Configuration Variables

Summary of OrbixOTS configuration variables related to performance. All
variables listed below are in the Or bi xOTS scope.

Configuration Variable
Name

Description Default Value

The low watermark for the user request
thread pool. Once the low watermark is
OTS_TPOOL_LWM reached, the number of threads in the 5
pool never falls below this value.

Only relevant for OrbixOTS C++ servers.

The high watermark for the user request
thread pool. This represents the
maximum number of concurrent user 10 x

requests that can be active in a server at |OTS_TPOOL_LW
any one time (new requests are queued
until a thread becomes free).

OTS_TPOOL_HWM

17

Making Software Work Together”

Only relevant for OrbixOTS C++ servers.

OrS_Dl SPATCH_YI ELD

If set to TRUE, threads servicing user
requests yield just before being
dispatched; otherwise they are
dispatched immediately.

Only relevant for OrbixOTS C++ clients
and servers.

FALSE

OTS_00B_SYNCHRONOUS

If set to TRUE, out-of-band messages (for
example, two-phase commit messages)
are sent immediately instead of being
gueued.

Only relevant for OrbixOTS C++ clients
and servers.

FALSE

OTS_I NTERCP

If set to TRUE, CORBA-compliant
propagation contexts are sent in the
standard GIOP service context;
otherwise the context is piggy-backed on
requests using Orbix filters.

FALSE

OTS_ALWAYS_RETURN_CONTE
XT

If set to TRUE, a propagation context is
always returned from a transactional
invocation; otherwise a propagation
context is only put in a reply message
when an OrbixOTS C++ client is invoking
on an OrbixOTS C++ server.

FALSE

OTS_NO_OPTI M ZE_PROPAGA
TI ON

If set to TRUE, optimization of the
propagation context between OrbixOTS
C++ clients and servers is turned off;
otherwise a smaller context is exchanged
using a proprietary GIOP service context.
Only relevant for OrbixOTS C++ clients
and servers.

FALSE

18

Making Software Work Together”

Performance Tips Summary

The following summarizes the actions you can take to increase the
performance of your OrbixOTS applications:

» Use raw disk partitions for transaction logs.

» Take advantage of the group commit feature by increasing the level of
concurrency in your servers.

* Reduce the amount of data logged by keeping your application simple:
reduce the number of servers participating in transactions; minimize the

number of XA resource managers and CosTr ansact i ons: : Resour ce
objects.

* Avoid using transaction log mirrors.
* Avoid using the remote logging feature.

* Reduce unnecessary two-phase commit overheads by using “read-only”
transactions.

* Use the XA/one-phase commit optimization.

» If possible use dynamic XA resource manager registration.

* Reduce the overheads associated with the propagation context: reduce the
number of servers participating in transactions; create transactions in

servers rather than in clients.

» Take advantage of the “allows” transaction policy feature to reduce the
number of times transactions need to be propagated to servers.

* Refer to your XA resource manager documentation for performance hints.

» Set the OrbixOTS configuration variable OTS_NO_OPTI M ZE_PROPAGATI ON
to FALSE.

» Set the OrbixOTS configuration variable OTS_ALWAYS_RETURN_CONTEXT to
FALSE.

» Keep transactions short to avoid tying up shared resources.

» If possible release OCCS locks early (non-strict two-phase locking).

19

Making Software Work Together”

Tune the user request thread pool to suit your application’s needs by
setting the OrbixOTS configuration variables OTS_TPOOL_LWvand
OTS_TPOOL_HWM

Use Synchr oni zat i on objects to support caching of XA resource manager
data.

If possible, do not wait for heuristics when committing transactions.

If possible, only use the Curr ent interface, and avoid creating
unnecessary CORBA objects.

Experiment with the OrbixOTS configuration variable
OTS_0OB_SYNCHRONOUS.

20

Making Software Work Together”

Further Reading

1. IONA Technologies, Orbix 3.0 Release Notes, February 1999,

2. Object Management Group (OMG), The Common Object Request Broker:
Architecture and Specification, Revision 2.1, OMG document number
97-09-01, August 19972,

3. Object Management Group (OMG), CORBAservices: Common Object
Services Specification, OMG document number 98-12-09, March 1995.

4. Baker, Sean, CORBA Distributed Objects: Using Orbix, Addison-Wesley,
November 1997.

5. Henning, Michi, and Steve Vinoski, Advanced CORBA Programming with
C++, Addison-Wesley, February 1999.

6. Geraghty, Ronan et al., COM/CORBA Interoperability, Prentice Hall,
January 1999.

7. Slama, Dirk et al., Enterprise CORBA, Prentice Hall, March 1999.

! Orbix release notes are available from:
http://ww. i ona. conif onl i ne/ support/update/i ndex. ht m

2 OMG documents are available from:
http://ww. ong. org

21

Making Software Work Together”

Contact Details

IONA Technologies PLC
The IONA Building
Shelbourne Road

Dublin 4

Ireland

PhONE: ...ooviiiiicecceccceccc e +353 1 637 2000
FaX: i +353 1 637 2888

IONA Technologies Inc.

200 West St

Waltham, MA 02451

USA

PhONE: ..oooiieiiee +1 781 902 8000
FaX: oo +1 781 902 8001

IONA Technologies Japan Ltd
Aoyama KK Bldg 7/F

2-26-35 Minami Aoyama
Minato-ku, Tokyo

Japan 107-0062

PhONE: ... +813 5771 2161
FX! ittt +813 5771 2162
SUPPOIE: ot support@iona.com
Training:training@iona.com
Orbix Sales:sales@iona.com
IONA’'S FTP Site ..cveeviiiiieiienie e ftp.iona.com

World Wide Web: Www.iona.com

22

	Summary
	Introduction
	Recovery Logging
	Raw Disk Partitions
	Group Commit Feature
	Reducing the Amount of Data Logged
	Mirroring Logs
	Use of Logging Servers

	Two-Phase Commit Messages
	Reduce the Number of Transaction Participants
	Read-Only Participants
	Dynamic XA Registration
	One-Phase Commit XA Optimization

	Propagation Context
	Reducing Context Size
	Reducing Use of the Propagation Context

	Data Isolation
	Miscellaneous
	User Request Thread Pool
	Caching Resource Manager Data
	Do Not Wait for Heuristics
	Use of the Current Pseudo Object
	Out-of-Band Messages

	Configuration Variables
	Performance Tips Summary
	Further Reading
	Contact Details

