
Black Pearl
Knowledge Broker

Programmer’s Reference

Version 1.3.1

Black Pearl, E-Intelligence for E-Business, and Sfera are trademarks of Black Pearl Software, Inc. All other
trademarks are the property of their respective owners.

© Copyright 1999-2001, Black Pearl Software, Inc. ALL RIGHTS RESERVED.

No right to reproduce, distribute, perform, display or modify this manual is granted hereby. If additional
copies are required, please contact techpubs@blackpearl.com.

The information presented herein is provided to the reader “as is,” without warranty of any kind. Black Pearl
Software, Inc. hereby disclaims all other warranties, whether expressed, implied, statutory or otherwise.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE iii
Contents

How This Guide Is Organized .xii

Audience . xiii

Document Conventions . xiii
Special Message Conventions . xiv
Menu Conventions . xiv

Additional Help. xiv

Chapter 1 Understanding the Knowledge Broker • 1

Application View of the Knowledge Broker 2

System Components . 6
Container . 6
Application Components . 7
Descriptor Components . 8
Object Factories . 14
Reasoning Services . 15
Query and Transformation Service . 15
Administration Service. 16

Chapter 2 Understanding the Ontology • 19

Ontology Structure . 20
Why an Ontology? . 20

Encoding the Ontology Using Directed Acyclic Graphs 22

Examining the Knowledge Broker’s DAGs 23

Appreciating the Ontology Advantage . 25

Finding the Database Relation . 27

Traversing the Ontology . 28

Serializing the Ontology . 28

Chapter 3 Understanding the DIS • 29

DIS Architecture . 30
Overview . 30
Richer interaction support . 31
Mapping support . 32
Federation . 33

General Architecture . 34
Extended Client API. 35

Roles and Connections . 37
Connection Factories and JDBC . 38

Schema Management . 40
Schema Components . 43
Putting it All Together . 48

iv CONTENTS
Interaction Management. 48
Request Object. 51
Queries - RequestResponse Interactions. 51
Interaction Scenarios . 52
Interaction Procedures . 54

Interacting with XML Documents. 56

Event Management . 57
Architecting Events . 57

Data Management . 58
Architecting the Data Management . 58
Introducing the Cursor . 60
Using Cursors . 61
Using DOMProvider . 62

Distributed Information Service Query Engine (DISQE) 62
Analyzing the DISQE . 64
Describing the DISQE. 65

Chapter 4 Descriptors in Detail • 67

Taking a Descriptive Approach . 68
Understanding the Descriptive Process 68

Role-Playing the Descriptive Process . 69
Descriptor Author . 69
Descriptor User . 69
Descriptor Customizer . 70

Interacting with the Knowledge Broker Subsystems 70
Administration Service . 70
Container . 71
Connector . 71
Object Factory . 72

Organizing the Descriptor Interfaces . 72
Naming Descriptors . 73
Descriptor Properties . 74
Linking Descriptors. 75
Detailing the Descriptors . 75

Visualizing the Descriptors Graphically . 82

 . 83

Chapter 5 Building an Application • 85

Building an Application Using Descriptors 86
Analyzing the Application . 86

Using the External Descriptor API . 87
Using the Interaction Descriptors. 88
Using the Message Descriptors . 90
Using the Type Descriptors . 90
Customizing the Schema Descriptors 91

Creating the Descriptor User’s Control Flow 91
Demonstrating Message Processing . 92

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE v
Inferring Using the Evidence . 92
Communicating With the Knowledge Broker 93
Analyzing the Application Code . 93

Writing the Deployer Descriptor . 98
Setting Connections and Starting the Application 98
Next, assign the newly created connection descriptor to the interac-
tion descriptors. Again, use the Knowledge Broker GUI to update the
interaction descriptors. 99

vi CONTENTS

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE vii
List of Tables

Chapter 1 Understanding the Knowledge Broker • 1

Connector Descriptor JavaBean Properties 9
Connection Descriptor JavaBean Properties 10
Types of Interactions . 10
Utility Interfaces. 11
Interaction Descriptor JavaBean Properties. 12
Message Descriptor JavaBean Properties. 12
Schema Descriptor JavaBean Properties. 13
Ontology Descriptor JavaBean Properties 14
Inference Engine Descriptor JavaBean Properties 14

Chapter 2 Understanding the Ontology • 19

Relationship Types. 21

 Chapter 3 Understanding the DIS • 29

Management Functionality . 36
getSchemaConnection Methods . 48
Types of Interactions . 49
Utility Interfaces. 50
Storing and Retrieving XML Documents . 56
DISQE Connector Descriptor JavaBean Properties 65
DISQE Connection Descriptor JavaBean Properties 66
DISQE Interaction Descriptor JavaBean Properties. 66

 Chapter 4 Descriptors in Detail • 67

Connector Names . 71
Descriptor Groups . 72

 Chapter 5 Building an Application • 85

Interaction Descriptors . 88
Message Descriptors. 90

viii

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE ix
List of Figures

Chapter 1 Understanding the Knowledge Broker • 1

Figure 1-1. Overview of the Connector Architecture. 3
Figure 1-2. Overview of the Connector Architecture. 4
Figure 1-3. Extended Client Interface . 5
Figure 1-4. Knowledge Broker Functional Components 17

Chapter 2 Understanding the Ontology • 19

Figure 2-1. A Simple DAG . 22
Figure 2-2. Simple DAG, Converted to a Tree 22
Figure 2-3. DAG Model, topologically sorted 23
Figure 2-4. Simple Ontology Diagram . 24
Figure 2-5. DAG Ontology . 26

Chapter 3 Understanding the DIS • 29

Figure 3-1. Overview of the Connector Architecture. 34
Figure 3-2. DIS Architecture . 35
Figure 3-3. Extended Client Interface . 37
Figure 3-4. Connection Architecture (Managed Scenario) 39
Figure 3-5. Connection Architecture (Non-Managed Scenario) . . . 40
Figure 3-6. Schema Management Architecture. 41
Figure 3-7. Schema Management Architecture - Asserted Schema 42
Figure 3-8. Schema Management Hierarchy - Asserted Schema . 43
Figure 3-9. DISQE . 63
Figure 3-10. DISQE XQuery Execution . 65

Chapter 4 Descriptors in Detail • 67

Figure 4-1. Analyzing Descriptors . 82

Chapter 5 Building an Application • 85

x

xi

Introduction
Welcome to the Black Pearl Knowledge Broker Programmer’s
Reference. It contains technical information intended to provide
programmers, knowledge engineers, and system deployers with
sufficient understanding to deploy and integrate the Black
Pearl™ Knowledge Broker™ within enterprise environments.

xii INTRODUCTION
How This Guide Is Organized
How This Guide Is Organized

Chapter 1 Understanding the Knowledge Broker provides an overview of the Knowledge
Broker subsystems and platform architecture.

Chapter 2 Understanding the Ontology provides an introduction to the Knowledge Broker’s
ontological approach and some of the technologies used to achieve this.

Chapter 3 Understanding the DIS describes the underlying Data Information System, the
heart of the Knowledge Broker’s data mapping and transformation infrastructure.

Chapter 4 Descriptors in Detail describes how to access Knowledge Broker’s subsystems
using descriptors, an XML-based approach to rapid application development.

Chapter 5 Building an Application outlines a simple demo application for the Knowledge
Broker using descriptors and also provides some example Java code that
ullustrates how to program the control flow.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE xiii

Audience
Audience

This guide is intended for those people who will use the Black Pearl Knowledge Broker to
perform a variety of tasks:

System integrators and deployment specialists reading this guide should have at least
some knowledge of the Java 2 Enterprise Edition platform architecture, or a similar
distributed, middleware architecture system. Programmers should have knowledge of
Java and Enterprise JavaBeans, XML, and some knowledge of message-oriented
middleware (MOM) systems.

Document Conventions

This guide uses a variety of formats to identify different types of information.

User Tasks Important Chapters

System Integrators
Deployment Specialists

Install and integrate the Black Pearl
Knowledge Broker within an enterprise

• Chapters 1, 4

Programmers Code the control flow and application
logic

• Chapters 1, 2, 3, 4

Knowledge Engineers Code the business logic • Chapters 2, 4

Convention Function

courier Identifies syntax statements, on-screen computer text, and path, file, drive,
directory, database, and table names.

<courier> Identifies variable names.

bold
courier

Identifies text you must type.

italics Identifies document and chapter titles, special words or phrases used for the first
time, and words of emphasis.

underline Identifies URLs, domain names, and email addresses.

Initial Caps Identifies Window, menu, command, button, option, tab, keyboard, and product-
specific names.

ALL CAPS Identifies acronyms and abbreviations.

[] Identifies an optional item in syntax statements.

{ } Identifies an optional item that can be repeated as necessary within a syntax
statement.

> Identifies a separation between a menu and an option.

| Identifies a separation between items in a list of unique keywords when you may
only specify one keyword.

xiv INTRODUCTION
Additional Help
Special Message Conventions

Menu Conventions

This guide uses the Menu > Option convention. For example, “Click Format > Style” is a
shorthand instruction for “Click the Format menu, then select the Style option.”

Additional Help

For additional information or advice, contact:

Identifies information that will help prevent equipment failure or loss of data.

Identifies information of importance or special interest, including Notes and Tips.

Contact Information

Application Online Help and Readme text file

Phone (415) 357-8300

Facsimile (415) 357-8399

Internet http://www.blackpearl.com

Email sales@blackpearl.com
techsupport@blackpearl.com
techpubs@blackpearl.com

Postal Black Pearl, Inc.
400 Second Street, Suite 450
San Francisco, CA 94107

Chapter

 1
� Application View of the
Knowledge Broker • 2

� System Components • 6
Understanding the

Knowledge Broker

This chapter introduces the Black Pearl Knowledge Broker
platform architecture. Through integrating a distributed
systems approach, intelligent agents, an ontology or “data
representation layer”, and rules processing, the Knowledge
Broker enables the collective expertise of enterprises to be
brought to bear in electronic markets to create more intelligent
transactions.
1

2 CHAPTER 1
Understanding the Knowledge Broker
Application View of the Knowledge Broker

The Knowledge Broker can be seen by external applications as an inferencing and
recommendation service. External applications and services send requests to the
Knowledge Broker and receive responses. This is a synchronous mode of operation.
External applications and services can also communicate with the Knowledge Broker
asynchronously, as either publishers of or subscribers to the Knowledge Broker’s
information services.

The Knowledge Broker gathers input data from enterprise information resources (EIS)
such as database systems (RDBMS), structured data files such as XML by making query-
like requests. The Knowledge Broker’s architecture enables external applications to be
abstracted into information resources. Thus, the Knowledge Broker can interact with
message-oriented middleware (MOM) systems and their message streams such as RV or
MQ.

The Knowledge Broker’s services execute on a server, within a container in the Java 2
Enterprise (J2EE) sense of an application server that provides the following services in an
implementation-specific way:

• Transaction Management

• Security Management

• Connection Pooling

In the J2EE Connector Architecture (JCA), the container communicates with a resource
adaptor using these system-level contracts. The resource adaptor then provides a
platform- and language-neutral bridge between the application components and the
various EIS using, respectively, application-level contracts and EIS-specific interfaces.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 3

Application View of the Knowledge Broker
Additionally, application components communicate with the container using container-
component contracts.

The application contracts form the Application Programming Interfaces (APIs) that lie
between the resource adapter and the application components; these APIs define a
Common Client Interface (CCI). The Knowledge Broker uses the Extended Client
Interface (XCI) J2EE architecture specification to transparently intercept calls between
the resource adaptor and external application components. The XCI is the gateway to the

Figure 1-1. Overview of the Connector Architecture

You can learn more about the J2EE Connector Architecture from the Javasoft site at:
http://www.javasoft.com/j2ee/white/connector.html
http://java.sun.com/j2ee/download.html#connectorspec

4 CHAPTER 1
Understanding the Knowledge Broker
Knowledge Broker’s inferencing and data federation services that extend enterprise
systems’ functionality far above that available from most J2EE and middleware vendors.

Figure 1-2. Overview of the Connector Architecture

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 5

Application View of the Knowledge Broker
By intercepting these calls (within its Data Information Service, or DIS) and
transparently routing them to its own execution services, the Knowledge Broker can add
its own unique services. These are:

• Event Service

• Query Service

• Data Model Service

• Schema Service

The Knowledge Broker is not, however, tied to the J2EE architecture. A basic execution
environment enables the Knowledge Broker to provide its infrastructure services across a
message bus such as TIB/RV.

The Knowledge Broker provides for rapid application modeling and deployment by
taking a descriptive approach to application development. The application model uses
descriptive data files (called descriptors) to initialize the infrastructure “plumbing” that
provide the services and application logic. In many cases, these descriptors take the form
of ready-made templates. Application development for specific configurations of EIS or
application components thus often requires that a deployment editor inputs deployment
parameters. The difficulties of connecting to diverse EIS are encapsulated behind these
descriptors, and application development proceeds rapidly.

Separately, a model-based approach uses a different level of descriptors to define the
business logic and inferencing services. Thus, business analysts/domain experts/
knowledge engineers can concentrate on defining and refining the logical model. this
parallel mode of solution development and deployment is flexible and fast.

Figure 1-3. Extended Client Interface

6 CHAPTER 1
Understanding the Knowledge Broker
System Components

This section outlines the Knowledge Broker’s various functional components from an
application-centric point-of-view. There is a deeper, connector-based view where the
details of the container-connector contract and APIs are not encapsulated behind
descriptors but instead rely on developers’ familiarity with JCX. However, the vast
majority of Knowledge Broker application development and deployment can be
accomplished through descriptor authoring and configuration.

The eight main components of the Knowledge Broker are the:

• Container

• Application Components

• Descriptor Components

• Object Factories

• Reasoning Services

• Query and Transformation Service (DISQE)

• Connectors

• Administration Service

Container

The container hosts all application components, descriptor components, and services. It
creates and registers services and components and, on request, locates these objects for the
requestor. This is called hosting. Containers generally pool these resource in an efficient
manner and balance access to them.

The container also manages execution threads for components and services, and
dispatches requests that come from external processes through a connector.

A Unique Resource Identifier (URI) uniquely identifies every component with a name.
This mechanism enables multiple containers to host components in a distributed fashion.

Sophisticated containers also manage sessions and private state. This means that a request
to locate a service or component will search within the requestor’s current session
context. This provides transactional isolation between sessions and transactions.
Transparent fail-over and load balancing are advanced container options and depend
greatly on container implementation and deployment.

From the application’s point-of-view, the container offers at least the following functions:

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 7

System Components
• Named access to descriptor components. The container returns a handle that
implements the component interface; calls to the implementation object can thus be
transparently marshalled.

• Configures the dispatch requests to application components.

Not all containers provide transparent remote method invocation (RMI). The descriptor
components have proxy counterparts that organize the implementation to the
counterpart objects. A registered application component must satisfy at least one of these
three conditions:

• Be local.

• Provide a local proxy that marshals requests to the original component.

• Be registered within a container that offers remote location and invocation services.

Currently, the Knowledge Broker supports one container:

• TIB/RV Container

TIB/Rendezvous Container

The TIB/RV Container executes components based on the arrival of TIB/RV messages.
One or more application components register interest in specific messages using one or
more interaction descriptors. These descriptors encapsulate and configure
communications with the TIB/RV connector. From the TIB/RV point-of-view, the
application component is a message consumer.

Application Components

Application components implement the basic control flow of a Knowledge Broker
application. The set of descriptor components remove much of the basic implementation
work from the application components. These lightweight application components
contain business logic that cannot be expressed using descriptors or that cannot be
provided (inferred) using the Knowledge Broker inferencing services.

8 CHAPTER 1
Understanding the Knowledge Broker
Descriptor Components

Descriptor components (also simply named descriptors) offload most of the infrastructure
code from the application components. The fact that descriptors are regular JavaBeans
(that implement interfaces) shields the descriptor user from specific implementations. A
descriptor bean could be located on a remote server or loaded by a specific container, but
this is transparent to the user.

Descriptors encapsulate within their bean properties most of the parameters usually
considered to be environment settings. The application code, for example, rarely sets
connection URLs or the descriptions of message content types; this role is left to the
descriptors. JavaBean properties can be set using a variety of graphical tools. An
application typically accesses a fully configured descriptor because of this persistent
descriptor storage.

Applications use descriptors mainly to invoke artificial intelligence (AI) services such as
the inference engines. They also use descriptors to provide a high-level interface to drive
the low-level connector API. Applications do not need to be aware of these low-level
details, or of how to obtain and set the configuration parameters. Instead, applications
use qualified names to reference the descriptors loaded by the container. There is
flexibility: applications can choose to overwrite the properties that were loaded from the
model storage.

There are eight main descriptors:

• Connector Descriptor

• Connection Descriptor

• Interaction Descriptor

• Message Descriptor

• Schema Descriptor

• Mapping Descriptor

• Ontology Descriptor

• Inference Engine Descriptor

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 9

System Components
Connector Descriptor

The connector descriptor encapsulates the parameters required to manage connectors.
Typically, an application does not use connector descriptors unless it requires access to
the low-level connector API.

There are four key connectors:

• TIBCO

• RDBMS

• WWW

• File

The JavaBean properties used by the connector descriptor include but are not limited to:

Table 1-1. Connector Descriptor JavaBean Properties

Property Description

Name The prefix of the connection URLs handled by the connector. For example, the
name of the connector to the TIB/RV bus is tibrv, while for DB2 the
connector’s name is jdbc:db2.

Connection URL
Strings

The names of the properties required to form a connection URL. For example,
the Oracle type-4 JDBC connector requires all of these to form a connection
string: TCP server name, port, and SID.

System-level
implementation
class names

These are the names of the classes that implement the system level
interfaces. These load dynamically and enable new connectors to be
plugged-in.

10 CHAPTER 1
Understanding the Knowledge Broker
Connection Descriptor

The connection descriptor encapsulates the parameters that are required to manage
connections. Typically, an application does not use connection descriptors unless it
requires access to the low-level connector API.

The JavaBean properties used by the connection descriptor include but are not limited
to:

Interaction Descriptor

The interaction descriptor encapsulates the information required to use an external
resource (that is, external to the Knowledge Broker). Database queries are one example of
an external resource interaction. Another is an external application invocation where the
application integrates with the Knowledge Broker through the connector framework.

There are four types of interactions:

Table 1-2. Connection Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the connection descriptor.

Connector name Uniquely identifies the connector descriptor.

Connection
properties

These are the names of the classes that implement the system level
interfaces. These load dynamically and enable new connectors to be
plugged-in.

Login string The user name and password response to a challenge/response connector.

Schema
connection
descriptor

The name of the connection descriptor that stores the schema. Some
connections do not provide schema information. In this case, after assertion to
a connection, the schema information is retrieved from a schema repository.

Table 1-3. Types of Interactions

Property Description

Synchronous
request/response

These are similar to method calls or external resource queries. The outgoing
part contains the parameters while the incoming part contains the results.

Synchronous
one-way

These pass information to an external resource. Storing information in a
database or publishing information to a message queue are good examples.

Notifications These consume information that an external resource has asynchronously
produced.

Solicit/Response These serve external requests that require a response. The Knowledge Broker
application offers to serve these requests. An application component
invocation initiated by an external application or client (say, a request to invoke
a Servlet and return a response) is a typical example.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 11

System Components
Interactions generally bundle one or two abstract messages. Even queries are modeled by
a pair of messages; the outgoing message contains the parameters while the incoming
message contains the results.

The four interactions use the utility interfaces listed in Table 1-4. These interfaces
describe how both discrete and document data can be passed to and from interactions:

Table 1-4. Utility Interfaces

Interface Description

DataInput

The DataInput interface reads data from the implementer.
The actor implementing the DataInput interface plays the
role of the data producer, that is, the side from where the input
comes.

The actor using the DataInput interface plays the role of the
data consumer, that is, the side to where the input goes. It pulls
the data from the data source (Cursor).

DataOutput

The DataOutput interface writes data to the implementer.
The actor implementing the DataOutput interface plays the
role of the data consumer, that is, the side to where the output
goes. It pulls the data from the source (Cursor).

The actor using the DataOutput interface plays the role of
the data producer, the side from where the output comes.

DocumentInput

The DocumentInput interface reads data from the
implementer. The actor implementing the DocumentInput
interface plays the role of the data producer, that is, the side
from where the input comes. It sends the data to the Content
Handler.

The actor using the DocumentInput interface is responsible
for connecting the listener actor, also called the data consumer.
This is the side to where the output goes. The data consumer
(ContentHandler) receives the document data. It can also
assume the role of the data producer itself.

DocumentOutput

The DocumentOutput interface writes data to the
implementer. The actor implementing the DocumentOutput
interface plays the role of the data consumer, that is, the side to
where the output goes. It receives the data via the
ContentHandler ‘sink’.

The actor using the DocumentOutput interface plays the
role of the data producer, that is, the side from where the
output comes. It pushes the data into the sink (the
ContentHandler).

12 CHAPTER 1
Understanding the Knowledge Broker
The properties used by the interaction descriptor greatly depend on which connector
handles the interaction. The JavaBean properties used by the interaction descriptor
include but are not limited to:

Message Descriptor

The message descriptor describes an incoming or outgoing message. It is tied to both an
interaction and a type descriptor (that describes the data of the message content).

Message descriptors access data in a generic format, considered to be a low-level interface.
The object factory sub-system constructs specific instances of Java classes to perform the
generic data access. There are two main styles of data access: a cursor and a content
handler. An application uses a cursor to iterate over a complex, tree-like data structure. By
comparison, an application using a content handler implements callbacks to iterate over
the data structure. The Knowledge Broker content handler is a regular Simple API for
XML 2.0 (SAX). XML applications usually consume data using content handlers and
many applications implement SAX handlers.

The JavaBean properties used by the message descriptor include but are not limited to:

Table 1-5. Interaction Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the interaction descriptor.

Connection name Uniquely identifies the connection descriptor (and therefore the connection
that performs the interaction).

Timeout The length of time the interaction will wait.

Connector-specific
parameters

These include parameters such as a query string, or a subject message and
filter.

For more information about SAX, see
http://www.megginson.com/SAX/index.html

Table 1-6. Message Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the interaction descriptor.

Connection name Uniquely identifies the connection descriptor.

Type The type of the content.

Optional recipient Some messages require specific routing information in addition to the
information available through the interaction or the connection.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 13

System Components
Schema Descriptor

The schema descriptor (also called a schema) is a collection of type descriptors. A resource
adaptor stores the schema externally. Some resource adapters, such as relational databases,
store the schema information with the primary data whereas others require a schema that
is asserted to the connection. The schema associated with the interaction connection
contains the interaction message types.

Schema information can be externalized using the XML Schema Description Language
(XSDL).

The JavaBean properties used by the schema descriptor include but are not limited to:

Mapping Descriptor

The mapping descriptor specifies how one type data maps (or transforms) to another data
type. This descriptor can also define heterogeneous joins of multiple data sources.
Applications use mapping descriptors to specify to the DIS Query and Transformation
Engine (DISQE) how complex information assets should be assembled or transformed.
Finally, the mapping descriptor enables filter and view specification.

Mapping descriptors can be externalized using the XML Query Language (XQuery).

A mapping descriptor associated with an interaction descriptor forms a complex query.
When selecting which descriptor to use in complex queries, the mapping descriptor takes
precedence over the interaction descriptor.

Table 1-7. Schema Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the schema descriptor.

Version Uniquely identifies the schema version.

List of types A list of the schema types.

For more details about XQuery, see
http://www.w3.org/TR/xquery/

14 CHAPTER 1
Understanding the Knowledge Broker
Ontology Descriptor

The ontology descriptor (or ontology) is a collection of concepts and relations between
these concepts. Ontologies are a key component of the Knowledge Broker’s knowledge
base.

The JavaBean properties used by the ontology descriptor include but are not limited to:

Inference Engine Descriptor

The inference engine descriptor configures an inference service. An application does not
have to configure all properties. As with all other descriptor objects, configuration can
take place through a graphical user interface (GUI). The GUI configuration output is
then stored in the model storage.

The JavaBean properties used by the inference engine descriptor include but are not
limited to:

Object Factories

In addition to descriptors, object factories are used when specific classes must be
instantiated and filled with data from external interactions.

Object factories do not work only in conjunction with descriptors. They can also be used
to gain access to objects already instantiated in memory. The Knowledge Broker is thus
able to access objects controlled by other applications. In this scenario, an interaction
descriptor identifies only a concrete instance.

Table 1-8. Ontology Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the ontology descriptor.

Version Uniquely identifies the ontology version.

List of Concepts A list of the concepts and relations.

Table 1-9. Inference Engine Descriptor JavaBean Properties

Property Description

Name Uniquely identifies the inference engine descriptor.

Ontology name Uniquely identifies the ontology descriptor.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 15

System Components
Reasoning Services

Reasoning engines provide the core of the Knowledge Broker advanced artificial
intelligence (AI) services. These technologies set the Knowledge Broker apart from
standard middleware platforms. When combined with the Knowledge Broker’s
infrastructure services (heterogeneous data access, message-oriented middleware (MOM),
and EIS connectivity), AI services can be integrated within enterprise architectures.

To reason, inference engines require access to rule objects and concept/relation objects.
Descriptors can conveniently retrieve both types of object. Object factories deserialize
XML representations into rules and construct JavaBeans from data received through
connectors.

Rete Inference Engine

The Rete inference engine is the primary inference engine. It computes a set of atomic
formulas created by a set of facts and rules in implicative normal form. The facts are fully
instantiated atomic formulas that can be retrieved from a data source or assembled by a
program.

The Rete Engine accesses all working memories. The memories consists of two parts:
global facts and local evidence. Global facts are shared between sessions. Local evidence
scope is restricted to each rule engine invocation. An Advisor Java class wrapper accesses
the inferencing engine.

Query and Transformation Service

The Query and Transformation Engine (DISQE) maps or transforms data structures into
other data structures, using the low-level generic data representations: cursor and content
handler. Frequently, a connector does not structure information in the appropriate
format required by application or object factory. The DISQE assembles new structures
out of existing structures.

The standard reference for the Rete algorithm is:
C. Forgy. Rete: A fast algorithm for the many patterns/many objects match problem. Artificial
Intelligence, 19(1):17--37, 1982.

16 CHAPTER 1
Understanding the Knowledge Broker
Administration Service

The Administration Service (AS) manages the collection of descriptor objects. The
collection (which includes the ontology) is called the Application Model.

The AS communicates with the graphical user interface (GUI) used for modeling,
deployment and monitoring. It also manages the storage and retrieval of descriptor
objects using an internal command language.

The AS uses the object factory subsystem to deserialize a model from the persistent
storage format: an XML file. It partitions the XML file into several physical files and
transparently links them together. A good analogy here is to visualize how a browser
build a single display screen from multiple entities such as text, images, frames, and so
on.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 17

System Components
Figure 1-4 is a schematic representation of the Knowledge Broker’s functional
components.

Figure 1-4. Knowledge Broker Functional Components

18 CHAPTER 1
Understanding the Knowledge Broker

Chapter

 2
� Ontology Structure • 20

� Encoding the Ontology Using
Directed Acyclic Graphs • 22

� Examining the Knowledge
Broker’s DAGs • 23

� Appreciating the Ontology
Advantage • 25

� Finding the Database Relation •
27

� Traversing the Ontology • 28

� Serializing the Ontology • 28
Understanding the

Ontology

The ontology lies at the heart of the Knowledge Broker. It is a
data abstraction and modeling approach based not on
normalized relational tables but instead on an ontological
hierarchy. Application programmers do not interact with the
ontology directly, instead using conventional descriptor objects
to trigger instantiationnand inferencing across an ontological
domain. Nevertheless, it is useful to understand the abstract
logical structure that makes the Knowledge Broker’s solution so
flexible, extensible, and scalable.
19

20 CHAPTER 2
Understanding the Ontology
Ontology Structure

Why an Ontology?

The Knowledge Broker has three core functions:

1 transforming raw data into information

2 transforming information into knowledge

3 transforming knowledge in a concise, relevant, and active format

The Knowledge Broker’s transformation and information exchange services operate using
an actor communication model. Several internal Knowledge Broker subcomponents
communicate with each other, and may also communicate with external actors (data
sources, news feeds, and so on).

At the core of every business model there is a conceptual representation of its domain-
specific objects and their relationships with other objects. This model is stored within an
ontology: a logical structure that defines relationship of different entities in the modeled
domain to each other. Managing and merging multiple ontologies allows the Knowledge
Broker to extend its reasoning expertise across many domains.

Ontologies (and similar data structures) have been used extensively through history for
knowledge management and exploration. Dictionaries using the lexical relationships
embedded within the alphabet are a predecessor of ontologies, while programmers’
object-oriented class definitions are a type of strict hierarchical ontology.

An ontology is a set of objects and their relationships, a semantic web of taxonomic
information with additional links representing associated properties or attributes. An
object can be “real”, that is, referring directly to entities or qualities with physical
manifestations and capable of operationalization (or reification where data instantiates a
generic object description into a concrete instance of that object). Or an object can be
abstract, referring to other objects and collections of objects. A relationship is a named set
of links between objects, with the most basic relationship being a parent-child linkage.
Ontologies can thus be represented as nodes and arcs; this is a graph-theoretical
approach.

A domain can be modeled with a set of facts and concepts that are important to the
domain and a semantic vocabulary that expresses these concepts. The vocabulary
translates important domain-level concepts into logic-level names. An ontology also lists
the relationships between these terms.

Using the terms and relationships defined in the ontology, business analysts can encode
business logic through writing logical sentences using the supplied vocabulary. These
logical statements are business rules. These rules combined with the concepts and
relationships embedded in the ontology comprise the knowledge base. This knowledge

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 21

Ontology Structure
base expresses the logic clearly and in a semantically relevant form compared with coding
business logic using application programming semantics. This facilitates direct
involvement by domain experts in analysis and problem solving.

Using the rules of inferencing, the Knowledge Broker can also inference across the
existing statements and automatically derive new consequences from the knowledge base.
These inferences can be acted on immediately, as recommendations, or entered into the
knowledge base to produce further inferences.

Concepts

More specifically, an ontology describes a hierarchy of concepts related by subsumption
relationships; in more sophisticated cases, suitable axioms can be added to express other
concepts relationships (also called context). This contextualization also constrains the
range of the concepts’ intended interpretation.

Relations

Within an ontology, nodes represent concepts. Lines joining nodes (“arcs” or “edges”)
represent the relationships between concepts. These relationships are typically meronymy
and hyperonymy.

• Meronymous relationships describe the belonging between a whole and a part. A whole
HAS_A part. A part IS_PART_OF a whole.

• Hyperonymous relationships describe the equivalence between a concept and a sub-
concept. A subconcept IS_A concept.

Because Knowledge Broker’s models tend to be semantic and lexical (based on English
usage), it’s valuable to think of how these relationships map into English:

Rules

The business rules within the knowledge base have the following structure:

If antecedent then consequent

The consequent is composed of an action and a concept. Both the antecedent and the
consequent are terms defined in the ontology.

Table 2-1. Relationship Types

Relationship Applicable To Examples

Hyperonymy noun-to-noun
verb-to-verb

car/automobile
walk/move

Meronymy noun-to-noun head/nose

22 CHAPTER 2
Understanding the Ontology
Typically, these rules take the form of:

• If (customer) then recommend hot stocks

• If (nervous customer) then sell highly volatile stocks

Encoding the Ontology Using Directed Acyclic Graphs

Many programmers are intimately familiar with the concept of trees, commonly used to
indicate relationships between objects, such as files and directories (for example,
Windows File Explorer tree view). The Knowledge Broker uses a more complex data
structure, known as a Directed Acyclic Graph, or DAG, to represent objects in the
ontology.

Tree nodes can have at most one parent. By comparison, DAG nodes can have multiple
parents, and more than one root node.

Figure 2-1. A Simple DAG
equities risky

| |
/ \ / \

/ \ / \
/ \ / \

stocks junk bonds derivatives

Every DAG can be represented as a tree. In this representation, a node can be multiply
listed as a child node of each of its parents. This DAG can be represented in Figure 2-2.

Figure 2-2. Simple DAG, Converted to a Tree

+--equities
| +--stocks
| +--junk bonds
+--risky

+--derivatives
+--junk bonds

An ontology therefore can be ideally represented by a DAG.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 23

Examining the Knowledge Broker’s DAGs
A graph structure where all of the relation arrows (or edges) can be ordered to point in
the “same” direction is known as topologically sorted. Because DAGs can always be
topologically sorted using recursive descent (depth-first search or DFS), they are optimal
for many computational tasks, such as critical path analysis, expression tree evaluation,
and game evaluation. All of these tasks, and more, are necessary for the Knowledge
Broker to maximize performance as it accesses complex ontologies. Cyclic graphs cannot
be topologically sorted

The DAGs provide the following ontologically related functionality:

• Add a new concept to the graph.

• Delete a term from the graph. All subsequent terms related to this term would also be
deleted.

• Change the meaning of a term in the graph.

• Add/Delete/Change an arc, attribute, or concept.

• Add/Change ontological filters.

Examining the Knowledge Broker’s DAGs

The Knowledge Broker represents ontologies using the following DAG constructs:

• Nodes

• Arcs

• Direction

A node represents a concept in the domain, for example, “hot stocks”, “rich customers”,
“sectors”, “internet stocks”. A node has certain attributes associated with it that can be
evaluated. For a Customer, for example, the attributes could be age, income, risk profile,
location, net worth, and so on.

Figure 2-3. DAG Model, topologically sorted

24 CHAPTER 2
Understanding the Ontology
An arc represents a relationship between the nodes. The arc is a function or
transformation that produces a child node from the parent node. A child can have
multiple parents. An example of a transformation is “all customers with income greater
than one million dollars”. Applying this transformation on the “customers” node will
create a new concept that could be named “high net worth customers” (of course, the
number of instances of this new concept will be zero or null if no customers’ incomes
satisfy the transformation condition).

The direction of the arc provides the relationship between the parent and the child nodes.

The Knowledge Broker’s DAG representations exhibit some other features:

• There are two types of nodes. The first is a primary concept node or extent (for example,
“Customer”, “Assets”, and so on) and corresponds to Data Concepts associated in the
Data Concept Editor with datasource items can be retrieved from an external data
source. The second type of node is a classification concept (for example, “Hot Stuff ”,
“Rich Customer”) and corresponds to Secondary Business Concepts defined in the
Business Concept Editor.

• Arcs represent an IS_A relationship between the parent and the child. For example,
hot stock IS_A Stock. Other arcs, while supported, are not currently implemented.

• The DAG captures the inter-relationships between the terms. Every node in the DAG
evaluates to specific instances and these have to be mapped to their data sources.

The following diagram illustrates a simple ontology. “Stocks”, “Market Condition”, and
“Customers” are three primary concepts within a domain.

Figure 2-4. Simple Ontology Diagram

Customers

Stocks
High Net

Worth

Hot Stuff

General Term

Market
Condition

Bull
Market

Bear
Market

Primary Concept Classification
Concept

Bonds

IS_A

Assets

Customers
In Bull Mkt

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 25

Appreciating the Ontology Advantage
Suppose a business analyst entered the following business rule:

If (High Net Worth Customer) then recommend hot stocks

At inference time, the Knowledge Broker will read in data from external data sources to
create an instance of Customer, perform a test to determine whether the customer is high
net worth, and generate a hot stock recommendation if the test is successful.

Appreciating the Ontology Advantage

It is possible to construct advice and personalization systems using rules-based syntax but
omitting any ontological representation. Unfortunately, these systems lack transparency,
do not scale well with increasing numbers of rules, and are brittle when assumptions
must be changed.

For example, a typical non-ontology ecommerce rule might resemble something like a
sequence of simple condition-action pairs such as:

If Customer lives in California &&
They are 18-30 years of age &&
They selected a backpack
Then
Recommend tents with a priority of 10

These rules may have been derived from simple data-mining, or through business
analysis. Entering a large business rules is going to be tedious, inflexible, non-intuitive,
and error-prone.

By contrast, the Knowledge Broker’s ontological-based approach uses a simple ontology
to express this rule. This ontology contains “Customers”, “Retail Goods”, “Back Pack”,
and “Tents” as primary concepts (derived from data sources). The business analyst can
define a new concept, “Young California Backpacker”, which are those customers that
live in California, are between the ages of 18 and 30, and have selected “Backpacks” in
their shopping carts.

Then the same business rule can be stated as:

If “Young California Backpacker”
Then
Recommend “Tents” with a priority of 10

26 CHAPTER 2
Understanding the Ontology
By abstracting the business logic into the ontological domain, the system can express
statements about the domain in semantically precise language suitable for consumption
by domain experts without further post-processing or analysis.

Figure 2-5 shows the DAG for this ontology.

Another advantage of the ontological system lies in its flexibility. Suppose a business
requirement arose where the policy was now to recommend tents to customers living in
New York, or example, instead of California.

In the non-ontological system, every business rule would have to be scanned for the
presence of the text symbols or codes corresponding to “California”, the rule’s context
checked, and the necessary substitution made. This process is tedious and vulnerable to
errors and unforeseen interactions. This same change can be made by simply entering the
ontology editor (the Business Concept Editor) and changing the expression for the arc
from “Customer” to “Young California Backpacker” to location being “New York” and
changing the name “Young California Backpacker” to “Young New Yorker Backpacker”.

Figure 2-5. DAG Ontology

Y o u n g C a lif
B a c k p a c k e r

c a te g o ry =
" te n ts "

c a te g o ry =
"b a c k p a c k s "

s h o p p in g c a r t
c o n ta in s "b a c k p a c k "

s ta te = C A

a g e = 1 8 ..3 0

G e n e ra l C o n c e p t

C a lifo rn ia n

C u s to m e rs
R e ta il G o o d s

Y o u n g

b a c k p a c k e r
T e n ts

B a c k p a c k s

C la s s if ic a t io n

P r im a ry
C o n c e p t

G e n e ra liz a t io n

C o n te x tu a l
R e la tio n s h ip

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 27

Finding the Database Relation
Finding the Database Relation

One further advantage of the ontology is that you can easily query the system for
instances corresponding to each of the concepts. This can provide useful population and
percentage information and is similar to querying a relational database, but with certain
unique characteristics.

Relational databases, with their normalized forms, schemas, and associated entity-
relationship models, also represent ontologies. However, they are more limited for
knowledge and semantic management than ontologies (where Knowledge Broker excels),
because they are typically limited to the abstractions represented in the databases.
Context and consistency have to be applied using external maps, and most schemas lack
explicit enumerations of the values or domain definitions. Formulating queries implies
too much knowledge of the underlying data structure. Ontologies are a way to group
database records in a semantically meaningful way. Semantic grouping makes it trivial to
retrieve a set of records that are associated with a particular concept; this is analogous to
the way b-trees allow the retrieval of a range of data.

Much information (residing in databases or XML files or structured messages) takes the
form of attribute-value tuples. The Knowledge Broker’s ontology contains concepts,
where each concept has a name or ID, a list of sub-concepts, and a list of attributes.
These concept node objects feature “empty” attribute values. Retrieving values from the
underlying data sources and inserting these values into the attribute “slots” creates object
node instances.

Traversing an ontology therefore can involve several distinct operations:

• Retrieve any or all direct instances of a concept.

• Retrieve any or all sub-concepts of a concept.

• Retrieve any or all transitive sub-concepts, that is, any or all sub-concepts reachable
through following any or all possible directed links.

28 CHAPTER 2
Understanding the Ontology
Traversing the Ontology

The Knowledge Broker DIS handles the underlying data access, marshalling, and
federation necessary to map external data to the internal logical ontology representation.
In the Knowledge Broker, you communicate with the DIS using cursors. Cursors are
objects that are used to traverse abstract data structures. They return result sets that form
a strict hierarchy with traversal rules.

The DIS objects are traversed in a normalized order that is equivalent to a recursive
descent (that is, depth-first searching or DFS). Thus, a Cursor traverses the object’s
children (in a preset order) before it traverses any sibling (the next child of the parent of
the current object).

This maps well to the topological sorting properties of DAGs. Using recursive descent,
looking at a previously-examined node would imply that there was a cycle in the graph.
But this is impossible because the Knowledge Broker represents the ontology as directed
and acyclic graphs.

Specialized cursors insert and extract objects from the ontology and rulebase. You do not
interact directly with the ontology but instead access it through the Data Management
Objects of the DIS.

Serializing the Ontology

The ontology can be serialized and written out to external storage. This is
implementation-dependent. The ontology can be stored as an XML file, on a network as
a URL, or within a suitable RDBMS (using the appropriate resource adaptor).

Chapter

 3
� DIS Architecture • 30

� General Architecture • 34

� Roles and Connections • 37

� Schema Management • 40

� Interaction Management • 48

� Interacting with XML
Documents • 56

� Event Management • 57

� Data Management • 58

� Distributed Information Service
Query Engine (DISQE) • 62
Understanding the DIS

The Distributed Information System (DIS) is the core data
federation and transaction and query processing Knowledge
Broker subsystem. It orchestrates and enables communication
between all the subsystems, and with external applications. A
general understanding of the DIS architecture is valuable,
although the Descriptor approach described in the following
chapter “shields” application component developers from much
of the underlying DIS complexities while facilitating rapid
application development and deployment.
29

30 CHAPTER 3
Understanding the DIS
DIS Architecture

The DIS is the “glue” that binds the logical ontological models contained within the
Knowledge Broker to data sources in the external world. More formally, the DIS provides
connectivity to heterogeneous data sources. It adds value to the Java 2 Platform,
Enterprise Edition (J2EE) by offering extended functionality not found in the standard
Java 2 Connector Architecture (JCX) or in freely available resource adapters. The DIS
follows the principal goal of the connector architecture by presenting a uniform API
enabling access to heterogeneous information systems.

The J2EE platform additionally specifies a way to extend the containers by accessing
external Enterprise Information Systems (EIS). EISs range from relational databases over
messaging systems to packaged back-office applications (for example, Enterprise
Resource Platform, or ERP, systems). The part that specifies how the J2EE platform
provides connectivity to EIS is called J2EE Connector Architecture (JCX).

Overview

The Knowledge Broker is built on the J2EE platform. It adds a number of services to the
platform using the DIS component to provide connectivity to heterogeneous data
sources. The DIS adds value to J2EE by offering extended functionality absent from the
standard connector architecture or freely available resource adapters.

The J2EE specification prescribes a single uniform procedure to access enterprise
information systems. The purpose of the connector architecture is that implementation is
not tied to a specific application server or vendor but instead is applicable to all J2EE
platform-compliant application servers from multiple vendors.

The DIS architecture allows further leveraging of development effort by using existing
J2EE standard connectors. The DIS extends the JCX architecture in three areas:

• Richer interaction support

• Mapping support

• Federation

This document describes the JCX architecture in detail:
http://java.sun.com/j2ee/download.html

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 31

DIS Architecture
Richer interaction support

The DIS enhances JCX client support with four new, rich interactions:

• Schema Support

• XML Support

• Java Object Support

• Unified Address Support

Schema Support

In a standard J2EE platform, a client application cannot programmatically discover
schema information contained within an EIS. By contrast, the DIS offers a schema
discovery API. Additionally, it offers a uniform API for creating a schema in an external
system (if the system supports a native API to accomplish this task). Relational database
management systems (RDBMS), for example, often offer proprietary schema creation
and manipulation mechanism.

XML Support

Enterprise Application Integration (EAI) has moved to an XML-based approach. The
integration of enterprise-wide information flows demands XML support, while some
external systems, such as e-commerce exchanges, offer only XML-based interfaces.
Applications and components requiring connectivity are often XML-based as well. The
DIS offers XML client support, such as Simple API for XML 2.0 (SAX) and Document
Object Model (DOM).

Java Object Support

The DIS expands the JCX Common Client Interface (CCI) support for retrieving objects
from and passing objects to connected systems. In standard JCX, an application must
obtain schema information through APIs proprietary to the external system. Even with
this knowledge, there is no standard mechanism to enable application navigation through
complex objects. The returned object passed to the EIS is a record, that is, a map, list, or
a JDBC result set. Standard JCX provides no further support for the objects contained
within these “top-level containers”. By contrast, the DIS provides uniform access to
complex Java objects using a JavaBean-style API. This access is built on the schema
support.

For more information about SAX, see
http://www.megginson.com/SAX/index.html

For more information about DOM, see
http://www.w3.org/DOM/

32 CHAPTER 3
Understanding the DIS
Unified Address Support

The DIS defines a mechanism that enables clients to address resources in a uniform way.
It offers a simple unified addressing and querying mechanism based on an extended URI
syntax. This is built on support for XPath.

Mapping support

The DIS offers support to client applications to enhance JCX with three complex
mapping functions:

• User-Defined Name Mappings

• Object Structure Mappings

• Mapped Object Structure Queries

User-Defined Name Mappings

The DIS offers support for user-defined name mappings. It creates a logical schema that
can use different names as identifiers; it can also form different types based on other
types.

Object Structure Mapping

The DIS offers support for application-defined object structure mappings. Instead of
relying on the external storage’s underlying representation, the DIS creates a logical object
that can use different structures for object properties and different types for the values of
the properties. The logical schema drives the created object structure.

Mapped Object Structure Queries

The DIS offers support for querying mapped object structures. These involve resolving
type and name mappings.

For more information about XPath, see
http://www.w3.org/TR/xpath

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 33

DIS Architecture
Federation

A federated view is also called a logical view, in contrast with a physical or external view
controlled entirely by a single EIS. Physical views are like isolated silos that stand side by
side. In JCX, the application developer assumes responsibility for their integration. The
DIS provides three federation functions to create transparent integration:

• Logical-to-External Schema Mapping

• Heterogeneous Composition of Objects

• Logical Query Decomposition

Logical-to-External Schema Mapping

The DIS provides a number of mappings between physical and logical schemas. It also
enables the mapping of particles from multiple physical schemas onto a single particle in
the integrated logical schema.

Heterogeneous Composition of Objects

The DIS offers support for object composition using particles from multiple external
systems. It enables the composition of objects with properties from multiple,
heterogeneous external systems.

Logical Query Decomposition

The DIS offers support for the mapping of queries to multiple sub-queries, where the
results are then composed to form a logical query result. The DIS component, the Query
and Transformation Engine (DISQE) is a powerful query engine and can accomplish
this.

34 CHAPTER 3
Understanding the DIS
General Architecture

The primary rationale for the JCX architecture is that the application server and the
various EISs collaborate to keep system-level services transparent to the application
components. This frees the application developer to concentrate on business and
presentation logic.

As described in Roles and Connections on page 37, Resource Adaptors (RAs) specific to
each EIS broker the information flows between the EIS and the application components,
and between the EIS and the application server. The system contract encapsulates three
main management functions: connections, transactions, and security.

EIS access for the application components comes through a a client API called the
Common Client Interface (CCI). Additionally, client APIs may be specific to a RA and
its underlying DIS. Java Database Connectivity 2.0 (JDBC) is an example of such an
API.

Figure 3-1. Overview of the Connector Architecture

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 35

General Architecture
Extended Client API

Using the JCX Extended Client Interface (XCI) standard to add functionality, the DIS
does not replace existing resource adapters but rather wraps them and provides additional
APIs. To the application component, the DIS appears to be a standard connector, but a
connector to internal as opposed to external systems. The DIS delegates all functionality
regarding connection, transaction and security management to the EIS-specific
connector. This indirection enables mapping and federation support through
intercepting the application component’s CCI calls to the physical RAs. Figure 3-2
illustrates the role of the DIS regarding the connector architecture.

Figure 3-2. DIS Architecture

36 CHAPTER 3
Understanding the DIS
The DIS’s extended API enables the management functionality described in Table 3-1.

Table 3-1. Management Functionality

Management

Functionality
Description

Schema Applications require metadata access concerning the data flowing to and from
the EIS. The Schema Management API is based on the XML Schema
standard. This W3C standard defines a rich metadata model that can convert
all Java data structures into XML format.

Data Structure Although CCI does support uniform access to the parameters and results of
an EIS interaction, it does not prescribe how to navigate complex structures,
such as trees. The DIS APIs for data structure access support two application
styles: Java Beans-centric and XML document-centric.

Query The number of items managed by an EIS is potentially huge. Without query
language support, application components require adapter-specific query
operation encodings. The DIS provides a uniform access mechanism based on
a combination of URI and XPath.

Event Not all EISs play the role of a passive information resource. Many external
systems emit events that application components consume. For some
external systems this is the primary usage model, such as a stock ticker
where components register interest specific price change events. The optimal
model here is a publish/subscribe pattern. The DIS’s event management APIs
enable a component or an agent to register event listeners.

For more information about XML Schema, see
http://www.w3.org/XML/Schema

For more information about XPath, see
http://www.w3.org/TR/xpath

For more information about URI, see
http://www.w3.org/Addressing/

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 37

Roles and Connections
Each of the DIS APIs in the RA corresponds with a generic JCX service that contains the
functionality, with defined contracts between the RA and each of the services Figure 3-3
illustrates the DIS architecture for the XCI:

Roles and Connections

The J2EE JCX architecture uses roles to describe the responsibilities of different actors
during solution development.

Connector Providers supply a resource adaptor specific to an EIS.

Container Providers supply a container implementation for a specific application
component type with the Enterprise JavaBeans (EJB) specification serving as the
component contract. Application Server Vendors (ASVs) are usually also container
providers that provide a J2EE-compliant application server that supports component-
based enterprise applications. Container providers usually also supply resource adaptor
and application component deployment tools, as well as management utilities.

Application Component Providers (ACPs) create components that access one or more
EIS to perform business tasks. ACPs typically use functions provided by the CCI and any
ECX APIs; they are not expected to require systems-level knowledge. ACPs specify
external dependencies and structural information of components. They package their
components in Java Archives (JARs) for deployment.

Enterprise Tools Vendors provide utilities to simplify application development and EIS
integration.

Figure 3-3. Extended Client Interface

38 CHAPTER 3
Understanding the DIS
Application Assemblers combine application components JARs into more complex JARs
with deployment descriptors. Often domain experts, their assembled output can be
deployed as an enterprise application.

Deployers take the deployable components (that is, JARs with deployment descriptors)
and integrate them into an operation enterprise environment using deployment tools.

System Administrators configure and administer the completed enterprise system. They
often work closely with Deployers.

Black Pearl’s role within JCX is that of an Extended Connector Provider (ECP). An
application component accesses connections instances using a connection factory; these
connection instances communicate with the EIS. The connection factory supports the
connection management contract that provides for connection pooling.

Connection Factories and JDBC

Using a standard architected contract for connections between the application servers and
the resource adaptors ensures that the connector architecture is efficient, scalable, and
extensible. The JCX connection factories usually implement the
javax.resource.cci.ConnectionFactory interface, while JCX connections usually
implement the javax.resource.Connection interface. In fact, any class can be used
as a factory provided it implements a method compatible with this signature:

java.lang.Object getConnection() throws Exception

This method returns the connection object. By convention, this object implements a
method:

void close() throws Exception

This convention allows standard JDBC connections to be treated as JCX-compliant
connections.

The DIS architecture diagram differs slightly from the JCX 1.0 specification because the
application components interact with a DIS-implemented ConnectionFactory. To
the application component, the DIS ConnectionFactory provides the Connection.
The DIS implements the Connection object returned to the application component.
The DIS accomplishes this by providing an API that implements both the CCI and the
XCI.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 39

Roles and Connections
Both the DIS ConnectionFactory and the DIS Connection intercept application
component requests and delegate them in a modified form to the standard resource
adapter’s ConnectionFactory and Connection. The DIS makes no further alterations
to the JCX 1.0 architecture. However, this interception technique enables
implementation for all EISs of the javax.resource.cci.ConnectionFactory and
javax.resource.Connection interfaces. Application component code does not have
to account for alternative method signatures and becomes simplified.

In an application server-managed scenario, the DIS-enhanced connection architecture
looks like that in Figure 3-4.

The non-managed scenario connection architecture uses the same delegation
mechanisms. The DIS does not know whether the resource adapter
ConnectionFactory uses its own ConnectionManager or the application server-

Figure 3-4. Connection Architecture (Managed Scenario)

40 CHAPTER 3
Understanding the DIS
provided object. In a non-application server-managed scenario, the DIS-enhanced
connection architecture looks like Figure 3-5.

Schema Management

Schema management is one of the key DIS functionality enhancements to the baseline
JCX specification. The XML Schema conceptual model specification forms the core of
the Knowledge Broker’s Schema Management system.

The DIS implements a unified client interface for schema access by using a delegation
mechanism. The SchemaConnection interface (and some schema component
interfaces) provide the XCI’s schema “glue”. The DIS-returned Connection (that is, the
logical connection) itself implements the SchemaConnection. The resource adapter,
however, factors out the SchemaConnection interface from the Connection interface.
The extended resource adapter implements the SchemaConnection while the standard
resource adapter implements the Connection. This enables schema management

Figure 3-5. Connection Architecture (Non-Managed Scenario)

You can find out more about JCX connection scenarios in section 5.8 of the JCX 1.0
specification:
http://java.sun.com/j2ee/download.html#connectorspec

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 41

Schema Management
support to be implemented on any connection provided by a different vendor that does
not implement the XCI. Figure 3-6 outlines the schema management architecture:

A resource adapter reads and writes the schema. This enables a flexible storage
configuration using either the file system, a relational database or any other general
purpose storage provider.

Schemas are information items themselves and have a URI. The storage system managing
the schema does not have to be the storage that managing the schema-compliant primary
data items. They can be managed by different resource adapters. This is common when

Figure 3-6. Schema Management Architecture

42 CHAPTER 3
Understanding the DIS
the connector is unable to access internal schema information but, instead, the schema is
asserted from outside. Figure 3-7 illustrates this scenario:

The right-hand-side (RHS) connection supplies the schema retrieved by the left-hand-
side (LHS) connection. The RHS connection functions as the schema storage
mechanism. The schema URI is only meaningful for the schema-managing connection.
As part of the extended adapter, the SchemaConnection can call any proprietary API
accessible through the resource adapter Connection object. The SchemaConnection
can use either the SchemaConnectionFactory or the resource adapter's Connection
to retrieve the schema and construct the schema components.

Figure 3-7. Schema Management Architecture - Asserted Schema

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 43

Schema Management
Schema Components

A schema encapsulates a strict hierarchy, defined by the XML Schema specification.
Figure 3-8 illustrates this hierarchy:

Schema Roles

The DIS Schema Management Contract (SMC) uses a roles-based approach to
functionality. It defines and uses the following entities:

• External Schema

• SchemaManager

• SchemaConnectionFactory

• SchemaConnection interface

• SchemaFactory

• Schema Components

• SchemaEventListener

External Schema

External schema are blueprints of the EIS schema expressed using the XML Schema
conceptual model.

Figure 3-8. Schema Management Hierarchy - Asserted Schema

44 CHAPTER 3
Understanding the DIS
SchemaManager

The SchemaManager provides application components with the DIS entry point. This
interface enables applications to lookup, create, validate, and change a schema. After the
SchemaManager collects additional parameters, the DIS delegates future calls to the
SchemaConnectionFactory.

SchemaConnectionFactory

The SchemaConnectionFactory provides the schema management entry point into
the extended resource adapter. Using the schema management Connection (and a URI
that identifies this Connection schema), it creates SchemaConnection objects. The Java
Naming and Directory Interface (JNDI) supplies the lookup for the
SchemaConnectionFactory. There is one SchemaConnectionFactory instance for
each extended resource adapter, configured from an XML file. This file contains
SchemaConnectionFactory-specific initialization parameters. The DIS configuration
strategy is based on JavaBeans; for each value initialization parameter (in the XML file),
the initialization code attempts to call a setParam(value).

SchemaConnection interface

The SchemaConnection interface represents a pair of Schema and Connection
objects. At any given time, multiple connections can be associated with a single Schema
object, and multiple Schema objects associated with a single Connection object. The
SchemaConnection object represents these associations. The Connection must
guarantee that the same schema name (that is, URI) will result in the return of the same
SchemaConnection object. The SchemaConnection cannot modify the schema name.

There is always a Schema object associated with a SchemaConnection returned from
the SchemaConnectionFactory. A SchemaConnection object is in one of two states
(these are, however, invisible to application components using the Schema Adapter). The
external schema is either in sync or out of sync with the associated Schema object. The out-
of-sync state occurs either after the creation of a SchemaConnection (by passing in a
Schema object) or if an application component begins modifies a Schema. Application
components can either use the SchemaConnection.syncSchema to create an external
schema, or synchronize an external schema with the associated Schema object.

Because either can be modified independently, a SchemaConnection cannot guarantee
that its referred-to Schema is identical with the external schema; however the
SchemaConnection can detect a Schema object modification. The modification of an
external schema cannot normally be detected.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 45

Schema Management
SchemaFactory

The SchemaFactory constructs an initial Schema object, that is, the top-level Schema
component. The Schema Manager provides the implementation of the Schema
component interfaces; this is hidden from other modules.

Schema Components

Types, elements, attributes, and other metadata comprise Schema components.
Containing component methods create all Schema components other than the Schema
root object. Helper interfaces compose the component interfaces; each helper interface
expresses a component role. For example, the interface Schema derives from the helper
interface TypeOwner.

SchemaEventListener

The SchemaEventListener registers with a Schema object to receive read/write events
concerning the in-memory schema. This is separate from the external schema
modification event notification.

A SchemaEventListener enables the “lazy” construction of a very large in-memory
schema. The Schema Adapter initially constructs the high-level object. It then watches
the access to other schema objects and constructs them as needed.

The SchemaEventListener can also notify other modules that depend on the existence
of specific schema information, such as the ontology or the DISQE. The listener follows
the standard Java event design patterns (that is, veto, constraint, and property change).

If a connection is closed, the Schema Manager automatically removes any listeners still
registered by the corresponding Schema Adapter.

46 CHAPTER 3
Understanding the DIS
Schema Scenarios

There are six key scenarios where an application component calls the SchemaManager
methods:

• Reading an External Schema

• Sharing a Schema Object between Connections

• Creating a New External Schema

• Creating an External Schema from an Existing Schema Object

• Corroborating an External Schema

• Validating a Schema

In all cases, a Connection uniquely identifies each external schema.

Reading an External Schema

The SchemaConnectionFactory.getSchemaConnection method creates the
SchemaConnection. This method receives a URI that denotes the schema name. The
second parameter is a SchemaFactory object. The Schema root object is accessed using
the returned SchemaConnection. To create an instance of Schema, the
SchemaConnection calls the SchemaFactory. All subsequent calls to
SchemaConnection.getSchema return the same Schema instance. After establishing
the SchemaConnection, calling the SchemaConnection.getSchema method accesses
particular Schema instances.

Sharing a Schema Object between Connections

An application component can assert that multiple SchemaConnections share a
Schema object. The SchemaConnection makes no effort to locate a Schema object with
the same name or structure. If the application component provides no Schema object,
the SchemaFactory constructs a new Schema object (see above, “Reading an External
Schema”). Two SchemaConnections could become associated with different Schema
objects despite both connections being associated with the same external schema. To
share a Schema object, it must be explicitly assigned to a SchemaConnection using a
different SchemaConnectionFactory.getSchemaConnection method. This
method receives a URI and a Schema object as parameters.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 47

Schema Management
Creating a New External Schema

Creating an entirely new external schema follows the same procedure as “Reading an
External Schema” above, except for the non-existence of the Schema specified by the
external schema name URI. The returned SchemaConnection accesses the Schema root
object. Calling the SchemaConnection.isInSync method checks whether an external
schema exists. The returned Schema root object can be modified and the
SchemaConnection.syncSchema(SyncMethod.TO_EXTERNAL) method creates the
external schema.

Creating an External Schema from an Existing Schema Object

To create an external schema from an existing Schema object, pass the Schema object to
the SchemaConnectionFactory.getSchemaConnection method. Calling the
SchemaConnection.syncSchema(SyncMethod.TO_EXTERNAL) method checks
whether the external schema exists. If the check fails and there is no external schema, it is
created using the Schema components.

Corroborating an External Schema

Corroboration is the process of checking for equivalence between the external schema and
the Schema objects in memory. Corroboration does not take place during the creation of
the SchemaConnection, and there is no synchronization of the external schema with
the Schema object. To corroborate, application components must use the
SchemaManager.isInSync method. The method returns true if the Schema

components correspond with the external schema; otherwise it throws an exception that
details the variance.

Validating a Schema

Validation is the process of checking that a schema is valid, that is, that all schema
components can be resolved. Validation must be explicitly called using the
SchemaConnection.isValid method. Validation should not be confused with well-
formedness in XML documents. An invalid Schema prompts the
SchemaManager.isValid method to throw an exception detailing the problem.

48 CHAPTER 3
Understanding the DIS
Putting it All Together

Table 3-2 describes the results of calling the methods getSchemaConnection(URI,
SchemaFactory) or getSchemaConnection(URI, Schema) methods, followed by
SchemaConnection.syncSchema(SyncMethod):

Interaction Management

Interactions enable an external actor to interact with an adapter. Each adapter exposes its
interactions through public interfaces. These interfaces do not prescribe what an
interaction does but instead define how to initiate interactions, how to pass parameters,
and how to process results.

The interaction interfaces enable the following:

• Applications can use a broad range of interactions in a uniform way.

• Synchronous and asynchronous interactions.

• A uniform data transport mechanism.

• Well-defined interaction specifications.

Table 3-2. getSchemaConnection Methods

Factory

Method getSchemaConnection
(URI, SchemaFactory)

getSchemaConnection(URI, Schema)
SchemaConnection.syncSchema

External
Schema

Method:
To External

Method:
From External

Exists Create a Schema object,
read the external schema

Update the external
schema

Update the Schema
object

Not
Exists

Throw Exception Create the external
schema

Throw Exception

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 49

Interaction Management
Interaction Architecture

Each adapter provides an interaction factory that enables an application component to
retrieve interactions. To retrieve these interactions, the application component must
specify both the type and specification of interaction. An interaction specification is a
string that defines the required interaction. There are standard interaction specifications,
however an adapter can support non-standard interactions. For non-standard
interactions, the corresponding interaction specifications must be defined.

There are four types of interactions. These are explained in Table 3-3:

Table 3-3. Types of Interactions

Property Description

Synchronous
request/response

These are similar to method calls or external resource queries. The outgoing
part contains the parameters while the incoming part contains the results.

Synchronous
one-way

These pass information to an external resource. Storing information in a
database or publishing information to a message queue are good examples.

Notifications These consume information that an external resource has asynchronously
produced.

Solicit/Response These serve external requests that require a response. The Knowledge Broker
application offers to serve these requests. An application component
invocation initiated by an external application or client (say, a request to invoke
a servlet and return a response) is a typical example.

50 CHAPTER 3
Understanding the DIS
The four interactions use the utility interfaces listed in Table 3-4. These interfaces
describe how both discrete and document data can be passed to and from interactions:

Table 3-4. Utility Interfaces

Interface Description

DataInput

The DataInput interface reads data from the implementer.
The actor implementing the DataInput interface plays the
role of the data producer, that is, the side from where the input
comes.

The actor using the DataInput interface plays the role of the
data consumer, that is, the side to where the input goes. It pulls
the data from the data source (Cursor).

DataOutput

The DataOutput interface writes data to the implementer.
The actor implementing the DataOutput interface plays the
role of the data consumer, that is, the side to where the output
goes. It pulls the data from the source (Cursor).

The actor using the DataOutput interface plays the role of
the data producer, the side from where the output comes.

DocumentInput

The DocumentInput interface reads data from the
implementer. The actor implementing the DocumentInput
interface plays the role of the data producer, that is, the side
from where the input comes. It sends the data to the Content
Handler.

The actor using the DocumentInput interface is responsible
for connecting the listener actor, also called the data consumer.
This is the side to where the output goes. The data consumer
(ContentHandler) receives the document data. It can also
assume the role of the data producer itself.

DocumentOutput

The DocumentOutput interface writes data to the
implementer. The actor implementing the DocumentOutput
interface plays the role of the data consumer, that is, the side to
where the output goes. It receives the data via the
ContentHandler ‘sink’.

The actor using the DocumentOutput interface plays the
role of the data producer, that is, the side from where the
output comes. It pushes the data into the sink (the
ContentHandler).

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 51

Interaction Management
Request Object

The Request object encapsulates a Connection and a SchemaConnection, and
extends the java.util.Properties class. The Properties class presents a persistent
set of properties. The properties can be saved to or loaded from a stream. A string
represents each key and its corresponding value in the property list. A Request object
can be configured once, then stored either in a file or using JNDI. The following code
illustrates how to configure a Request:

Request request = new Request();
// Set standard properties
request.setConnectorName("ORA");
request.setConnectionURL(

"jdbc:oracle:thin:@JUPITER:1521:MYDB");
request.setSchemaURL("MYSchema");
request.setUser(user);
request.setPassword(password);
// Set Adapter specific properties
request.setProperty("Timeout", "10000");

The Request object also provides methods that simplify interaction and schema
creation. It provides a default implementation that hides the usual tasks of Factory
location and object creation, and so on:

OneWayOperation oneway =
request.getOneWayOperation(interactionSpec);

...
oneway.execute();

Queries - RequestResponse Interactions

Queries are formulated using the Quilt language. This provides a generic mechanism to
execute the query against different data sources. A query must be formulated in
conjunction with a schema. Queries execute using a RequestResponse interaction. Any
input parameters are specified using the DataOutput interfaces. A programming analogy
is JDBC parameter binding.

The DIS provides an application schema against which it is possible to formulate queries
that can result in a partitioning of the query into sub-queries. These sub-queries are then
delegated to their corresponding query adapter connector. A tree of sub-queries can thus
result from a query; this requires a mechanism to “join” the sub-query results. These are
heterogeneous joins. The DIS Query Engine (DISQE) manages generic steps such as
validation. The adapter manages connector-specific steps.

For more information about Quilt, see
http://citeseer.nj.nec.com/chamberlin00quilt.html

52 CHAPTER 3
Understanding the DIS
Interaction Scenarios

There are three key interaction scenarios:

• Query Execution - Synchronous Call

• Query Execution - Asynchronous Call

• Data Change Interaction Execution

The InteractionSpec interface assumes the role of the CCI InteractionSpec
interface.

Query Execution - Synchronous Call

A query can execute synchronously. The following steps are required to execute a
synchronous query:

1 Retrieve an InteractionSpec from the InteractionManager. This requires a
SchemaConnection and a textual representation of the required interaction

2 Request an instance of the RequestResponse interaction from the adapter’s
InteractionFactory (supply the InteractionSpec as argument).

Steps 1 and 2 can be accomplished by using a Request object.

3 Bind the parameters using the DataOutput interface on the RequestResponse
object.

4 Call the RequestResponse.execute method. Catch any exceptions.

5 Retrieve the result from the RequestResponse as a Cursor object.

The following code illustrates the retrieval of people’s names with specific ZIP codes (in
this case, California):

String queryString =
"FOR $a IN document(ADDRESS.xml)//address " +
"WHERE $a/zip EQ $Zip " +
"RETURN <TargetMarket>$a/NAME, $a/ZIP</TargetMarket>";

RequestResponse query = request.getRequestResponse(queryStr);
query.write("Zip", new String("CA"));
query.execute();
printCursor(query.read());

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 53

Interaction Management
Query Execution - Asynchronous Call

A query can execute asynchronously, where the execution returns immediately and a
callback listener delivers the results later. Asynchronous calls are useful when query
execution requires a long time period. The SolicitResponse interaction executes
asynchronous queries. The steps are similar to the synchronous call scenario, except that a
data “sink” collects the asynchronous call result. This sink is specified as a
ContentHandler and uses the DocumentOutput method.

ContentHandler getDataSink(String documentName);

The documentName parameter creates an identification (ID) that enables the sink
provider to prepare to receive data.

Data Change Interaction Execution

Adapters supporting persistence can expose the Data Change Interaction ability by
providing OneWayInteractions with a particular InteractionSpec. The DIS
defines a standard syntax for formulating such a data change interaction. The new,
update, and delete functions define data changes. They take as arguments a Quilt
query with any restrictions stated. The Quilt query must also provide a projection that
identifies which elements or attributes to change. The following code demonstrates how
to change a telephone number associated with a name:

OneWayOperation oneway =
request.getOneWayOperation(
"update (\
"FOR $a in document(\"ADDRESS.xml\")
"WHERE $a/NAME = $NAME "
"RETURN <Update> " +
"$a/PhoneNumber
</Update>\")");

oneway.write("NAME", name2Change); // Bind the parameter $Name
oneway.write("a/PhoneNumber", "123456789"); // bind new phone number
oneway.execute();

54 CHAPTER 3
Understanding the DIS
Interaction Procedures

Application components can use one or more procedures to execute interactions and
retrieve results. There are eight key procedures:

• Obtaining an Interaction object

• Executing an Interaction

• Closing an Interaction

• Canceling an Interaction

• Setting an Interaction Timeout

• Explaining an Interaction

• Monitoring Interaction Progress

• Handling Interaction Exceptions

Obtaining an Interaction object

The application component uses a Request instance for the particular adapter; calling
the corresponding method retrieves the interaction. The InteractionSpec is supplied
as a string so that the Request object can create and initialize the correct interaction.

Executing an Interaction

Calling the Interaction.execute method causes an interaction to execute. The
values of Parameters specified in the InteractionSpec must be supplied before
invoking the execute method.

Closing an Interaction

During interaction execution, the underlying adapter can elect to retain some resources
(useful in case of interaction re-invocation). These resources can be expensive or scarce,
and being able to free these resources when desired is valuable. To close an Interaction
object, use the Interaction.close method; this makes the interaction invalid. Any
subsequent Interaction method calls will throw an exception. Event listeners can be
registered with an Interaction object and registered listeners are informed during
instance closure. Using this mechanism, an adapter can listen for a close event (such as,
for example, a JDBC close event) and take action.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 55

Interaction Management
Canceling an Interaction

Interaction can require considerable lengths of time. During this period, the caller could
decide to cancel the call. The Interaction.cancel method attempts to cancel the
interaction. The results depend on the stage of interaction execution; cancellation can be
immediate, or it may require the completion of an external system call.

Setting an Interaction Timeout

Some systems offer interactions with timeout periods. This allows a caller to cancel the
interaction if the timeout period has expired. If the interaction has failed to respond
within the timeout period, the interaction aborts and throws an exception. The default
interaction timeout period is infinite (no timeout).

Explaining an Interaction

The Interaction.explain method enables an adapter to explain the details of its
intended interaction execution. The method returns a list of steps necessary to complete
the interaction as well as detailed information concerning the transformations and states
of the interaction at every step. Thus, in the case of a query issued against a JDBC
connector, the explanation will contain the following annotated steps:

1 Mapping resolution – name resolving required

2 Validation – validation using the schema

3 Partitioning – whether the query was partitioned and, if so, which partitions are used

4 Delegation to the adapter

5 Adapter-supplied explanation (if applicable), for example, SQL statement

Monitoring Interaction Progress

If an interaction requires a long time period to execute (for example, to query a large
XML document), a progress callback can be registered against the interaction. This
callback informs any listeners of the interaction progress. The progress report specifies the
name of the step as well as the percentage complete.

56 CHAPTER 3
Understanding the DIS
Handling Interaction Exceptions

Most interaction methods can throw the InteractionException class. This contains
diagnostic information about the exception cause and can also contain information
supplied by the underlying adapter.

Interactions are expensive in terms of resources, time, and memory. Many EISs are
sensitive to large numbers of interactions executing simultaneously (or a large quantity of
in-memory interactions). You should hold open a minimum of interactions and
systematically close them when they are no longer required. Various adapters can also
provide varying interaction abilities and restrictions. A query method caller should react
to a known set of exceptions. For example, if no timeout can be set then ignore the “Not
Supported” exception.

Interacting with XML Documents

The DIS defines these standard interactions for storing and retrieving XML documents:

The following code demonstrates how to use an adaptor to store an XML document.
XML documents require a unique filename for identification.

SAXParser parser = new SAXParser();
OneWayOperation oneway = request.getOneWayOperation("PUT");
parser.setContentHandler(oneway.getDataSink(xmlFileName));
parser.parse(fileName);
oneway.execute();

Table 3-5. Storing and Retrieving XML Documents

Interaction Description

PUT Stores an XML document.

GET Retrieves an XML document.

UPDATE Overwrites an XML document.

DELETE Deletes an XML document.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 57

Event Management
Event Management

Not all EISs are passive, that is, synchronous requests are sent and external systems reply
by returning results. Many systems such as stock quote services send a continuous or
discontinuous series of messages for the DIS to consume. Message consumers are
normally able to register interest in event subsets. As distinct from database-like
synchronous systems, these are called event sources.

There are two different event categories. The first covers events that indicate interaction
completion in the resource adapter. Applications register listeners to be asynchronously
called following successful interaction execution. When the interaction produces data, an
optional result is passed to the listener along with the event. A typical example of this
type of event listener is a stock quote monitor.

The second event category addresses the arrival of logical document content. These
events have a finer granularity than interaction completion events.

Architecting Events

Events are delivered to a callback object. The event consumer registers a listener or
handler object with the resource adapter. More specifically, the registration is with an
Interaction object.

There are two categories of listeners or handlers:

• InteractionListener

• ContentHandler

The InteractionListener object acts following interaction completion; an optional
result is delivered along with the event. A Cursor object encapsulates the result content.

58 CHAPTER 3
Understanding the DIS
Data Management

This section describes how the DIS manages data structures and their model or schema.
The DIS accesses, transforms, and outputs information based on domain-specific data
models. The DIS, however, does not enforce its own object model. The fundamental
principle underlying the DIS is that it is able to learn about, accommodate to, and work
with arbitrary domain object models. This enables connectivity and integration with
virtually all EISs. Applications can create their own object models in the same way
database systems enable applications to create their own data model.

Once a domain-specific object model has been expressed in a format understandable by
the DIS (that is, using a XML schema), a connection can be established to external EIS
(using the Connection Management Contract) and an Interaction can be executed that
returns the desired information items. These information items are described in such a
way that the DIS can explore and use them. The data management mechanism enables
access to these complex data structures. This section does not describe the invocation of
external system functionality or how to consume external system events.

Working with arbitrary object models requires a strong meta-object model. The meta
object model underlying the DIS is XML-based, but it is not equivalent to the Document
Object Model (DOM). DOM takes a document-centric approach, whereas the DIS
focuses on information entities (or objects). DOM is not a meta-model but a generic
object model. Additionally, not all information item types are relevant for the DIS object
models. For example, XML processing instructions, entity declarations, and so on are
either ignored or do not affect the system data flow. The DIS meta-model enables the
definition of items with specific types such as numbers, date, time, and boolean. XML
atomic values are strings.

Architecting the Data Management

The Data Management architecture is based on a meta-data architecture, specifically the
Schema Management architecture. A schema describes the domain object model’s data
structure but does not describe the methods or behavior. The Interaction model describes
the meta-model’s methods, while the Event model describes the meta-model’s events.

An accessor interface encapsulates all data structures passed to and returned from external
systems. This interface is the same for all external systems and all domain object models.
The interface enables uniform access to heterogeneous data sources with proprietary
meta- and domain object models. Each adapter is responsible for mapping between the
meta-information. For example, an RDBMS accessed via JDBC has an adapter that
translates between the Relational and DIS Schema meta models.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 59

Data Management
The interface allows generic access, which means that instead of using a specific property
of a class, the property name will be passed as a string to the accessor interface. The
adapter is responsible for mapping between the instance data structures. For example, an
RDBMS that is accessed via JDBC has an adapter, which translates between the domain
object models (ResultSet<->DIS accessor Interface). Notice that an RDBMS is also a
system with a generic data model. With other words it is possible to define domain-
specific object models.

The Data Management architecture handles large data structures efficiently. The accessor
interface defines Cursor-like semantics that enable the Accessor object to point to a
fragment of the underlying data structure without revealing the implementation or the
full structure. The Accessor methods explore all the elements and attributes, but
usually without returning the entire object (or structure of objects). To access different
parts of the overall data structure, the Accessor user moves the Cursor to the next
element. This moves the Cursor away from the previous element and allows the resource
adapter to reclaim resources previously allocated during earlier accesses.

The Accessor interface is an alternative to event-based access. Using the Event
Management Contract, an application provides a content handler that, when called,
passes to the application the fragments of a complex data structure. The application here
has no control over the fragment presentation order (unless the order was specified using
a query).

The accessor interface serves as the low-level least common denominator. Other content
formats are supported by transforming the Cursor into these formats. Two content
handlers are provided with the DIS: one for JavaBeans, and another for DOM objects.

The Data Management Architecture contracts do not require either the Resource
Adapters or the DIS services to instantiate potentially large amounts of small of objects to
reconstruct complex data or object structures (these structures might not even fit into a
single processing node’s memory). Instead, the Cursor-like semantics require the adapters
only to make accessible one object at a time. However, the adapter can use its own
representation and an appropriate caching/pre-fetching strategy. Layers on top of the
DIS can provide a caching layer that caches complex aggregated objects in their
instantiated form.

60 CHAPTER 3
Understanding the DIS
Introducing the Cursor

The Cursor interface provides a lightweight mechanism to navigate arbitrary trees. It
navigates using the concept of a current position within the tree. A Cursor object makes
no assumptions about the structure or contents over which it navigates. Different
physical representations can be hidden behind a Cursor, for example, a DOM tree or a
JDBC result set. However, to correctly interpret the Cursor return values requires a
schema. This schema details the exact nature of the returned Cursor values; the adapter
that produced the Cursor must also have produced a corresponding schema.

The Cursor interface is defined here:

public interface Cursor {
void close() throws DataException;
void reset() throws DataException

// value, name and type methods --------------------
Object getValue() throws DataException;
String getName() throws DataException;
Type getType() throws DataException;

// Attribute count, name, value and type method---------
int getAttributeCount() throws DataException;
String getAttributeName(int index) throws DataException;
Object getAttributeValue(int index) throws DataException;
Object getAttributeValue(String attributeName) throws DataException;
Type getAttributeType(int index) throws DataException;
Type getAttributeType(String attributeName) throws DataException;
String getNamespaceURI() throws DataException;

// navigation-------------------------------
int next() throws DataException;
boolean nextSibling() throws DataException;
boolean parent() throws DataException;
}

The close() method tells the cursor that it is no longer required and to deallocate any
internal resources. On initial construction, the initial Cursor position is before the first
element. The next() method moves the Cursor to a valid position (if there is one). The
Reset() method sets the Cursor state back to the original state, that is, to its state when
created initially.

The methods getValue(), getName(), and getType() enable access to the data
pointed to by the Cursor. The value types are described by a Type instance (part of the
Schema). If the value is a simple type then various type properties can be queried and
displayed, for example, maximum length, minimum value, and so on. Similarly, the
current object’s attributes can also be retrieved using the getAttributeName(),
getAttributeValue(), and getAttributeType() methods.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 61

Data Management
If the Cursor position is invalid, attempted operations throw the
CursorInvalidPosition exception; this extends the DataException standard
exception.

The next() method moves the Cursor to the next position in the tree. The algorithm
used to navigate the tree is has 5 steps:

1 Initially, the next() attempts to navigate to the first child object.

2 If a next child object does not exist, then next() backtracks and attempts to navigate
to the next sibling.

3 If a next sibling object does not exist, then next() attempts to navigate to the parent’s
next sibling.

4 If the parent’s next sibling does not exist, then next() attempts to navigate to the
next sibling of the parent's parent.

5 This process continues until next() cannot navigate to any more ancestor nodes.

Using Cursors

Assume a query returned a Cursor. The following code demonstrates how to output the
Cursor contents:

while((res = cursor.next())!= Cursor.END_OF_CURSOR){
String name = cursor.getName();
if (name != null)

System.out.print("<" + name + ">");
else

System.out.print("No name");

Type type = cursor.getType();

if (type != null && type instanceof SimpleType){
Type primitiveType = ((SimpleType)type).getPrimitiveType();

System.out.println("Primitive type: " +
primitiveType.getName());

Object value = cursor.getValue();

if (value != null)
System.out.print(value.toString() + " ");

else
System.out.print("null ");

}
}

The next() method navigates through the Cursor contents. The code prints each value
encountered, as well as its name and primitive type.

62 CHAPTER 3
Understanding the DIS
Using DOMProvider

DOMs commonly represent in-memory XML data. Many tools use DOM to perform
XML data operations. If an adapter’s internal data representation uses DOM, it’s useful
to be able to pass the DOM tree outside of the adapter. To avoid unnecessary complexity
in the Cursor interface, the DOMProvider interface offers this functionality. If an
adapter wants to expose its DOM representation, it implements the DOMProvider
interface:

interface DOMProvider {
public org.w3c.dom.Node toDOM();

}

A Cursor consumer can then check the Cursor instance to see if it is also a
DOMProvider instance:

if (cursor instanceof DOMProvider){
Node node = ((DOMProvider)cursor).toDOM();
// do something with the Node

}

The toDOM() method returns the DOM tree root node that the Cursor is using
internally. As long as the returned DOM nodes are not modified, there is no effect on the
Cursor. If they are modified, then the Cursor position may become invalid. It is the
toDOM() caller’s responsibility to manage both the DOM tree as well as the Cursor (the
adapter no longer has complete control over the DOM nodes).

Distributed Information Service Query Engine (DISQE)

Application components use the DISQE to access data from more than one EIS. The
DISQE is a virtual connector that provides a unified view of all available connection
descriptors. The DISQE enables heterogeneous joins.

In the JCX architecture, there is a one-to-one mapping at the adapter or connector layer
between each connector and its particular connecting EIS; a connector reads or writes
data only to its connected EIS.

Application components communicate with the DIS and underlying connectors through
a set of descriptor components provided by the application container. Just as application
containers provide descriptor components for physical adapters, they also provide
descriptor components for the DISQE virtual connector.

The DISQE initially supports one interaction descriptor, the RequestResponse.
Designed to support data retrieval, this interaction receives data either synchronously (via
Cursor) or asynchronously (via ContentHandler). The DISQE parses and evaluates
queries using a built-in XQuery processor. Queries passed into the DISQE become
formulated in XQuery.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 63

Distributed Information Service Query Engine (DISQE)
DISQE queries using more than one connector descriptor are heterogeneous joins. When
the same connector descriptor can retrieve the required data, the query is a homogeneous
join. For these, the DISQE may pass the entire query down to the relevant connector.

Implementing the DISQE as a virtual connector leverages off the contract between
application components and DIS-compliant connectors, using standard component
descriptors. For example, application components querying RDBMS for data use the
message descriptor (which identifies the desired interaction descriptor). If the data source
changes, the application only needs to identify a different message descriptor (or change
the existing descriptor).

The application can be quickly realigned with any EIS changes simply by altering the
relevant descriptors. Where an application now begins to query data from multiple data
sources presents, the use of descriptors shields the applications from the low-level system
details. The DISQE is a process layer that sits over the physical connectors, encapsulating
them.

Figure 3-9. DISQE

Interaction M anager (Interface)
Query

Cursor/
SAX

Query Engine (DISQE)I-Interaction

I-Schema

I-Cursor

I-Connection

W eb File RDBM S …
Xerces

XQuery

JDBC

3rd Party Layer

D IS Layer

Application Layer

M anaged

I-Txn

I-Security

I-Log

I-…

…

Application Component

TIB/RV

64 CHAPTER 3
Understanding the DIS
Analyzing the DISQE

As with other connectors, the relevant descriptor components best describe the DISQE
interfaces. A DISQE instance is described by its connector descriptor that encapsulates
the connection. There is no requirement for more than one DISQE connection
descriptor. There is one interaction descriptor for every query that client applications
require to trigger DISQE execution. All interaction descriptors refer to the same
connection descriptor, and all DISQE interactions are be RequestResponse. For each
interaction descriptor, there should be no more than two message descriptors: the first
specifies a synchronous data model and the second specifies an asynchronous data model.
Applications typically invoke the DISQE by loading and executing a message descriptor
that, using its descriptor chain, triggers the DISQE connector.

This sequence of steps illustrates the DISQE operations following an application
component request for the DISQE to execute a given XQuery.

1 The DISQE partitions the XQuery input into a list of sub-queries. This is the
partitioned query list. Each sub-query corresponds to a dataset that will be provided
by the connection. Each dataset will, in turn, be associated with the sub-query.

2 The DISQE delegates each query from the partitioned query list to the associated
connection's connector.

3 The connectors use the XQuery engine to execute the queries delegated to them
(retrieving data from the underlying EIS), returning their result sets as Cursor
objects.

4 For each delegated query, the DISQE receives a Cursor. It converts each of these
Cursor objects to DOM trees for further processing. A result joiner process associates
these DOM trees with their originator sub-query.

5 The DISQE generates a new XQuery specification based on the original XQuery and
the result of the previous step.

6 The DISQE uses the XQuery engine to execute the internally generated query

7 The DISQE passes back to the user the query results as either a Cursor or a series of
SAX events. This depends on how the application program specified the
RequestResponse interaction.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 65

Distributed Information Service Query Engine (DISQE)
Figure 3-10 illustrates these steps:

Describing the DISQE

Client applications use the DISQE through its descriptors; the DISQE appears to be
subsystem and can be accessed through descriptor interfaces (for further details, see
Descriptors in Detail on page 67). There are three key descriptors:

• DISQE Connector Descriptor

• DISQE Connection Descriptor

• DISQE Interaction Descriptor

DISQE Connector Descriptor

The JavaBean properties used by the DISQE connector descriptor include but are not
limited to those in Table 3-6:

Figure 3-10. DISQE XQuery Execution

Table 3-6. DISQE Connector Descriptor JavaBean Properties

Property Description

Name DISQE

Connection URL Not Applicable

Required Properties None

Application Component

Request Response Interaction

Partition

Delegate Result Join

Execute

Connector 1

EIS 1

Connector N

EIS N
…..

SAX Handler

Cursor SAX
Events

XQuery Engine

Quilt Parser

66 CHAPTER 3
Understanding the DIS
DISQE Connection Descriptor

The JavaBean properties used by the DISQE connection descriptor include but are not
limited to those in Table 3-7:

DISQE Interaction Descriptor

The JavaBean properties used by the DISQE interaction descriptor include but are not
limited to those in Table 3-8:

Implementation Classes These are provided for DISQE's interaction factory and managed
connection factory. Initially, the managed connection factory will just
return a DISQE instance.

Table 3-7. DISQE Connection Descriptor JavaBean Properties

Property Description

Name DISQEConnection

Connector Name DISQE

Connection Properties None

Schema Connection Name None

Table 3-8. DISQE Interaction Descriptor JavaBean Properties

Property Description

Name RequestResponse

Connection Name DISQEConnection

Timeout 0

Interaction Specification This is the XQuery specification

Table 3-6. DISQE Connector Descriptor JavaBean Properties

Chapter

 4
� Taking a Descriptive Approach •
68

� Role-Playing the Descriptive
Process • 69

� Interacting with the Knowledge
Broker Subsystems • 70

� Organizing the Descriptor
Interfaces • 72

� Visualizing the Descriptors
Graphically • 82
Descriptors in Detail

Descriptors enable application developers to create Knowledge
Broker applications rapidly and economically. They provide a
high-level Application Programming interface (API) that
shields developers from the more complex, low-level APIs such
as the DIS Connector interface, the DIS Query and
Transformation interface (DISQE), and the inference engine
interfaces.
67

68 CHAPTER 4
Descriptors in Detail
Taking a Descriptive Approach

This descriptive approach to application programming is suitable for the construction of
most Knowledge Broker applications that use services invoked from external applications
(clients) that send and receive messages. In a Message-Oriented Middleware (MOM)
infrastructure, these map to “real” delivered messages. But in a broader sense, the
invocation of a servlet's service method or an EJB's business method is also message
delivery.

Understanding the Descriptive Process

Application code generally continues querying data from the message and using it
(together with its state) to assemble more complex data structures. If it requires any data
in addition to that contained in the message, the application retrieves it from external
data sources or applications. Knowledge Broker applications, therefore, perform a
number of interactions with these resources and join the new data with whatever data is
already part of the application's state.

The Knowledge Broker makes transformations during the information gathering process.
Most external systems, applications, and data sources do not share a common data
model. Data, therefore, must be mapped. The Knowledge Broker does not force an
application to use specific data models. Instead, it enables data model definition as part of
the application development process. These external data models (or schemas) can be
easily mapped onto internal, dynamic Schemas. Additionally, the Knowledge Broker can
calculate new data elements based on the values of assembled data elements.

After assembling the data, an application generally invokes internal operations on this
data. These operations are various kinds of inferences. The gathered data is called
evidence. The artificial intelligence (AI) components inference over networks of objects.
Most of the application logic (except for the control flow described illustrated in this
chapter) resides in knowledge bases. These combine an ontology with a collection of
logical statements (a rulebase) suitable for inferencing.

The Knowledge Broker can join the AI components’ output to existing data structures, or
include it in the request message response, or push it out to another application (not the
requestor). This other application could be a database that makes the data available for
future requests. Alternatively, the Knowledge Broker could transform the output and
map it onto new data structures (similar to the input data).

The process could continue with further inferences or, as a final stage, end here with
result delivery.

The dominant application style is request-response. But the Knowledge Broker equally
well supports publish-subscribe application style, where the application plays the role of a
subscriber or publisher (or both).

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 69

Role-Playing the Descriptive Process
All applications follow this control flow and programming the transformation, external
interactions, and internal inferences can be tedious and time-consuming. Even though a
significant portion of the application logic already resides in knowledge base logic
statements, it’s efficient to use chained descriptive tools to construct the control flow.
With these in place, the application building process largely consists of configuring
descriptors that contain information to drive the AI and DIS interfaces.

Role-Playing the Descriptive Process

Three main human actors use the Knowledge Broker’s descriptors:

• Descriptor Author

• Descriptor User

• Descriptor Customizer

Descriptor Author

Descriptor Authors (or Authors) use a graphical interface to create descriptors and specify
their properties. Their role is somewhat similar to that of an application developer, but
they require no semantic programming skills. During construction, Authors must
understand the application’s internal control flow. They require this knowledge to link
the descriptors appropriately. The Author leaves the descriptors to be stored in a partially
or fully configured state.

Descriptor User

Descriptor Users (or Users) develop the application. They call the descriptors’ public APIs
to activate functions such as receiving request messages, joining and transforming data,
and calling inference engines. They find the objects pre-configured: most of the
descriptor properties will be already set. The User-developed application code performs
the associated activities using relevant descriptors. For example, a connection descriptor
opens a connection, a interaction descriptor calls an external resource, and a message
descriptor sets interaction parameters and retrieves interaction results.

If the descriptors have been stored in a fully configured state, then no additional
properties need to be set by the application code. The code simply retrieves the descriptor
objects, which are already linked with each other, and executes the activity.

70 CHAPTER 4
Descriptors in Detail
Descriptor Customizer

Descriptor Customizers (or Deployers) use the same tools as Descriptor Authors. However,
Deployers set or refine those properties whose values can only be known in a deployment
environment, or discovered during installation.

Using this approach, Authors and Users can develop and deliver complete applications.
But for execution, all required descriptor properties must be configured by Deployers,
who use Knowledge Broker tools to search for missing properties. Deployers do not add
descriptors or modify the links between them (change the control logic).

Interacting with the Knowledge Broker Subsystems

Four main Knowledge Broker subsystems use the descriptors:

• Administration Service

• Container

• Connector

• Object Factory

Administration Service

The Administration Service (AS) maintains a descriptor repository for one or more
applications. All descriptors have a unique, scoped name. The scope is called a Model. In
fact, the container for all the descriptors is the Model, and each descriptor is contained
within exactly one Model. The administration service manages each descriptors’ name-
to-object mapping. Some descriptor properties are in fact names of other descriptors, and
descriptors themselves must resolve links to other descriptors. To support the descriptors
here, the administration service maps names to descriptor objects. The AS also manages
the persistent storage of all descriptors. The Descriptors’ external representation uses an
XML-based language.

The administration service reads the XML file(s) that comprise a model, instantiates a
Java object for each descriptor, and sets the properties that are defined in the XML
document. To use specific Java classes for a descriptor, the administration service
delegates instantiation and property setting to the object factory subsystem.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 71

Interacting with the Knowledge Broker Subsystems
Container

Containers manage application components and dispatch requests to them. Containers
use the administration service to iterate over descriptors, then look for interaction
descriptors that denote an external application request.

Although applications that run within a specific container (for example, the TIB/RV
container) can use any connector for external system interaction, all containers always
have a native connector. This connector accepts external service requests from other
applications and dispatches these to application object requests without their initiation.

Connector

Connectors hold configuration information and drive other APIs. Connectivity
descriptors perform interactions across process boundaries. Querying a database system
or sending a message to another application are examples of such interactions.

Connector Descriptors describe a Knowledge Broker-specific extension of a standard
J2EE connector. A Knowledge Broker Connector provides a means of accessing an
external system, for example, a database or an Enterprise Information System. It also
provides a Schema for the underlying data and also Interactions which it can perform, for
exmaple, a Query.

Each connector provides exactly one connector descriptor. Currently, the connector API
specifies the following connector names:

Table 4-1. Connector Names

Connector Name

TIB/Rendezvous TIBCO

Oracle Oracle

WWW www

File System FILE

72 CHAPTER 4
Descriptors in Detail
Object Factory

Special Java classes implement all descriptor interfaces. For example, the
com.blackpearl.descriptor.ConnectionDescriptorImpl class implements the
com.blackpearl.api.descriptor.ConnectionDescriptor interface. The
administration server deserializes the XML data stream into an instance of the
implementation object using the object factory subsystem. The descriptor subsystem
provides deserialization handlers that instantiate the classes and appropriately set the
properties. Driven by the object factory subsystem, the handlers either provide an
instance of the org.xml.sax.ContentHandler interface or implement standard setter
methods that accept the properties.

Organizing the Descriptor Interfaces

The Descriptor interfaces provide the external programming interface to the descriptor
subsystem and also to other Knowledge Broker functionality. The Descriptor interfaces
are available online as JavaDoc format.

This section organizes the descriptors into four sections, grouped by functionality. The
four functional descriptor groups are listed in Table 4-2:

Each descriptor group depends somewhat on the previous group for complete
functionality. However, every descriptor can be created and combined with other
descriptors at any time. Development can proceed in parallel.

The Knowledge Broker externalizes all descriptors using an XML language. The bundled SAX-
compliant parser is Apache Xerces. Deployers can configure the Knowledge Broker to use
another suitable parser, if required.

You can find Apache Xerces information here:
http://xml.apache.org/xerces-j/

Table 4-2. Descriptor Groups

Function Descriptor

Connectivity Connector
Connection

Activity Interaction
Message

Data Modeling Schema
Type

Business Logic TBA

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 73

Organizing the Descriptor Interfaces
All descriptor interfaces share certain basic features. These are:

• Naming

• Properties

• Linking

Naming Descriptors

Every descriptor has a unique name, scoped within its class. The administration service
uses this name to look up the descriptor. Descriptors generally use a consistent naming
scheme.

Connector Descriptors

Connector descriptors use a short name of the middleware that provides the connection
or the server that accepts the connection. Knowledge Broker users generally will not have
to define connector descriptors. A finite number of connectors ship as part of the
product.

Connection Descriptors

Connection descriptors hold the configuration information for a connection (as provided
by a connector). Usually, the logical resource (being connected to) provides a connection
name that identifies it. This could be the name of a database, another application, or a
service. For example, an appropriate name for a database connection would be SALESDB.

Interaction Descriptors

Contains all the information to drive a spcific interaction with an external system. For
example, to drive a Query.

Message Descriptors

Message descriptors denote what they transport. If the message is linked to a request-
reply interaction, then one message should end with Request and the other with Reply.

Schema and Type Descriptors

Schema and type descriptors are free-form and flexible. They denote logical or physical
artifacts of the modeled domain.

Map Descriptors

Map descriptors include the target type and start with map.

74 CHAPTER 4
Descriptors in Detail
Descriptor Properties

Each descriptor contains distinct properties. These properties drive the underlying
functionality and provide it with parameters. Because the descriptor properties can be set
and used during deployment, an application does not have to provide these parameters.
However, application code can set or overwrite these properties. Various descriptors have
standard properties, and each standard property has specific getter and setter methods.

Generally, each property can be set using the method:

setProperty(String name, Object value)

The descriptor may store properties “non-supported” properties, but these are ignored.
This mechanism can be used to provide customized properties for certain applications.
Every descriptor implements a method that returns the names of supported properties.
The Knowledge Broker descriptor editor GUI presents a variable, contextual number of
fields. The on-screen format adjusts to suit whichever descriptor is being edited and to
reflect the current user’s security permission set. For example, the connection descriptor
editor displays different text input fields for different connection types. These fields are
familiar to an Author who knows the connector specifics.

Descriptor Users need to know when the Author has supplied all the required properties
and, thus, when the descriptor can execute the low-level connection functionality. Three
methods support this.

The first method returns the names of the properties:

String[] getRequiredProperties()

The second method returns a full list of all supported properties:

String[] getSupportedProperties()

The third method indicates when the descriptor is fully configured:

boolean isConfigured()

Fully configured does not mandate that all supported properties have been supplied.
Some properties may have been set with default values. The set of required properties
contains only those needed for functionality execution and that have no reasonable
default value.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 75

Organizing the Descriptor Interfaces
Linking Descriptors

Descriptors can have symbolic links (that is, a link defined through a name). These links
can exist even when the related descriptor does not exist. There are typically two pairs of
getter and setter methods. The first pair uses symbolic names, and the second uses the
related descriptor object.

The method names are constructed using a scheme. The getter methods have the
following signature (where XYZ is a placeholder for the descriptor type):

String getXYZName()

and

XYZDescriptor getXYZDescriptor();

The setter methods have the following signature:

void setXYZName(String name);
void setXYZDescriptor(XYZDescriptor descriptor);

Detailing the Descriptors

The descriptor properties are stored as XML 1.0-format files.

Connectivity Descriptors

TIBCO Connector Descriptor

The tibco.xml connector connectivity descriptor file specifies both the connector and
some default connection properties. The default file looks like this:

<?xml version="1.0"?>
<connectorDescriptor>

<name>TIBCO</name>
<URLPrefix>TIBCO</URLPrefix>

<!--Factories-->
<ManagedConnectionFactory>com.blackpearl.dis2.adapter.

tibco.ManagedConnectionFactoryImpl</ManagedConnectionFactory>
<SchemaConnectionFactory>com.blackpearl.dis2.adapter.

tibco.SchemaConnectionFactoryImpl</SchemaConnectionFactory>
<InteractionFactory>com.blackpearl.dis2.adapter.

76 CHAPTER 4
Descriptors in Detail
tibco.interaction.InteractionFactoryObject</InteractionFactory>

<!-- Connection Properties-->
<connectionProperties>

<service required="true"/>
<daemon required="true"/>

</connectionProperties>
</connectorDescriptor>

The parameter contents of this file are:

Name

The name element uniquely identifies the connector type. References to this name in the
model.xml by either the connectionDescriptor.connectorName or the
schemaDescriptor.connectorName serve to link together descriptors in a logical
flow. In this case, TIBCO.

URLPrefix

The URLPrefix element contains a short string that prefixes the connector URL and
helps to identify the type of resource and protocol required. The URLPrefix for the
TIBCO connector is TIBCO.

ManagedConnectionFactory

The ManagedConnectionFactory element identifies the Java class (one of the primary
JCX classes) that enables connection pooling with methods for matching and creating a
ManagedConnection instance. ConnectionFactories provide interfaces to get
Connections to EIS instances (in this case, a TIBCO message source). Clients use
Connections as application-level handles to access the underlying physical connection,
in this case, a connection to a TIBCO resource. A client gets a connection instance by
using the getConnection() method on a ConnectionFactory instance.
ManagedConnection instances created by the ManagedConnectionFactory represent
the physical connections associated with a TIBCO Connection instance.

The ManagedConnectionFactory class for the TIBCO connector is
com.blackpearl.dis2.adapter.tibco.ManagedConnectionFactoryImpl.

SchemaConnectionFactory

The SchemaConnectionFactory element provides similar functionality as the
ManagedConnectionFactory but expands the JCX architecture by enabling Schema
support.

The SchemaConnectionFactory class for the TIBCO connector is
com.blackpearl.dis2.adapter.file.SchemaConnectionFactoryImpl.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 77

Organizing the Descriptor Interfaces
InteractionFactory

The InteractionFactory element identifies the Java class (one of the primary JCX
classes) that enables connection pooling with methods for matching and creating a
Interaction instance. Interactions provide interfaces to invoke associated
functions in the underlying EIS (in this case, a TIBCO message source). Clients use
Interactions as application-level handles to access the interactions. A client gets an
interaction instance by using the getInteraction() method on an Interaction
instance.

The InteractionFactory class for the TIBCO connector is
com.blackpearl.dis2.adapter.tibco.interaction.

InteractionFactoryObject.

The tibco.xml connector descriptor also details some default and required connection
properties:

service

This is a Rendezvous API (Version 6) Network Transport Parameter. Different values of
service can isolate independent distributed applications running on the same network
from one another.

daemon

This is a Rendezvous API Network Transport Parameter. You can specify a particular
remote TIB/Rendezvous daemon using the daemon parameter.

TIBCO Connection Descriptor

The TIBCO connection descriptor includes extra parameters. Here is a typical
connection descriptor (contained in the model.xml file):

<?xml version="1.0"?>
<model>
...

<connectionDescriptor>
<name>tibcoCxn</name>
<url>10.0.100.100</url>
<service>null</service>
<daemon>null</daemon>
<refreshTimeout>-1</refreshTimeout>
<connectorName>TIBCO</connectorName>
<schema>fileSchemaCxn</schema>

</connectionDescriptor>
</model>

The extra descriptor parameters defined here are:

78 CHAPTER 4
Descriptors in Detail
url

This is Black Pearl’s name for the Rendezvous API Network Transport Parameter called
“network.” You can use the url/network parameter to control multicast addressing or to
address a specific outbound network interface on systems with multiple network
interfaces. Selecting the null value specifies the default NIC.

refreshTimeout

The refreshTimeout specifies the length of time in milliseconds the connection waits
to receive a TIBCO message before timing out. A setting of -1 specifies an infinite wait
time.

connectorName

The connectorName identifies which connector descriptor this connection references.
In this case, the value is TIBCO.

schema

The schema identifies the named schema descriptor that points to an XML Schema file
that describes how to convert between the TIBCO/Rv message format and the
Knowledge Broker’s internal in-memory representations.

Oracle Connector Descriptor

The oracle.xml connector connectivity descriptor file specifies both the connector and
some default connection properties. The default file looks like this:

<?xml version="1.0"?>
<connectorDescriptor>

<name>Oracle</name>
<URLPrefix>ORACLE</URLPrefix>
<ManagedConnectionFactory>com.blackpearl.dis2.adapter.database.

ManagedConnectionFactoryImpl</ManagedConnectionFactory>
<SchemaConnectionFactory>com.blackpearl.dis2.adapter.database.

SchemaConnectionFactoryImpl</SchemaConnectionFactory>
<InteractionFactory>com.blackpearl.dis2.adapter.database.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 79

Organizing the Descriptor Interfaces
interaction.InteractionFactoryObject</InteractionFactory>

<connectionProperties>
<urlPrefix required="true">Oracle</urlPrefix>
<serverName required="true"/>
<portNumber required="true">1521</portNumber>
<userName required="true"/>
<password required="true"/>
<driver required="true">oracle.jdbc.driver.OracleDriver</driver>
<protocol required="true">oracle:thin</protocol>
<databaseName required="true"/>
<timeout/>

</connectionProperties>
</connectorDescriptor>

The parameter contents of this file are:

Name

The name element uniquely identifies the connector type; in this case, oracle.

URLPrefix

The URLPrefix element contains a short string that prefixes the connector URL and
helps to identify the type of resource and protocol required. The URLPrefix for the
Oracle connector is ORACLE.

ManagedConnectionFactory

The ManagedConnectionFactory element identifies the Java class (one of the primary
JCX classes) that enables connection pooling with methods for matching and creating a
ManagedConnection instance. ConnectionFactories provide interfaces to get
Connections to EIS instances (in this case, an Oracle RDBMS). Clients use
Connections as application-level handles to access the underlying physical connection,
in this case, the connection to the Oracle database. A client gets a connection instance by
using the getConnection() method on a ConnectionFactory instance.
ManagedConnection instances created by the ManagedConnectionFactory represent
the physical connections associated with an Oracle Connection instance.

The ManagedConnectionFactory class for the Oracle connector is
com.blackpearl.dis2.adapter.database.ManagedConnectionFactoryImpl.

SchemaConnectionFactory

The SchemaConnectionFactory element provides similar functionality as the
ManagedConnectionFactory but expands the JCX architecture by enabling Schema
support.

The SchemaConnectionFactory class for the Oracle connector is
com.blackpearl.dis2.adapter.database.SchemaConnectionFactoryImpl.

80 CHAPTER 4
Descriptors in Detail
InteractionFactory

The InteractionFactory element identifies the Java class (one of the primary JCX
classes) that enables connection pooling with methods for matching and creating a
Interaction instance. Interactions provide interfaces to invoke associated
functions in the underlying EIS (in this case, an Oracle RDBMS). Clients use
Interactions as application-level handles to access the interactions. A client gets an
interaction instance by using the getInteraction() method on an Interaction
instance.

The InteractionFactory class for the Oracle connector is
com.blackpearl.dis2.adapter.database.interaction.InteractionFactoryObject

The oracle.xml connector descriptor also details some default and required connection
properties:

urlPrefix

The urlPrefix element contains a short string that prefixes the connector URL and
helps to identify the type of resource and protocol required. The default URLPrefix for
the Oracle connector is ORACLE. This element is required.

serverName

The serverName element identifies the RDBMS server host using standard IP
addressing. This element is required.

portNumber

The portNumber element identifies the port used for communication with the Oracle
RDBMS. The default portNumber for the Oracle connector is 1521. This element is
required.

userName

The userName element supplies the username credentials of a principal authorized to
access the Oracle RDBMS. This element is required.

password

The password element supplies the password credentials of a principal authorized to
access the Oracle RDBMS. This element is required.

driver

The driver element identifies the Java class that contains a driver suitable for
communication with the Oracle RDBMS. The default driver for the Oracle connector

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 81

Organizing the Descriptor Interfaces
is oracle.jdbc.driver.OracleDriver. This class file must be accessible through the
Java CLASSPATH environment setting. This element is required.

protocol

The protocol element identifies the protocol used for communication with the Oracle
RDBMS. The default protocol for the Oracle connector is oracle:thin. This
element is required.

databaseName

The databaseName element identifies the name of the Oracle RDBMS. This element is
required.

timeout

The timeout element specifies how long in milliseconds to wait for a response from the
Oracle RDBMS.

Oracle Connection Descriptor

The Oracle connection descriptor includes some extra parameters and provides values for
others defined initially in the oracle.xml file. Here is a typical connection descriptor
(contained in the model.xml file):

<?xml version="1.0"?>
<model>
...

<connectionDescriptor>
<name>oraLocalCxn</name>
<serverName>10.0.2.84</serverName>
<portNumber>1521</portNumber>
<userName>SYSTEM</userName>
<password>MANAGER</password>
<connectorName>oracle</connectorName>
<schemaName>oraLocalCxn</schemaName>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<protocol>oracle:thin</protocol>
<databaseName>ORCL</databaseName>

</connectionDescriptor>
</model>

The extra descriptor parameters defined here are:

82 CHAPTER 4
Descriptors in Detail
connectorName

The connectorName identifies to which connector descriptor this connection refers. In
this case, the value is oracle.

schemaName

The schema identifies the named schema descriptor that points to an XML Schema file
that describes how to convert between the Oracle data format and the Knowledge
Broker’s internal in-memory representations.

Visualizing the Descriptors Graphically

The relations between the descriptors can be seen from Figure 4-1:

Figure 4-1. Analyzing Descriptors

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 83

84 CHAPTER 4
Descriptors in Detail

 �
Chapter

 5
� Building an Application Using
Descriptors • 86

� Using the External Descriptor
API • 87

� Creating the Descriptor User’s
Control Flow • 91

 Writing the Deployer Descriptor •
98
Building an Application

Creating a call list for financial brokers is a classic
demonstration of how to integrate the Knowledge Broker’s
reasoning capabilities with external data sources. This chapter
explains how to code such an application.
85

86 CHAPTER 5
Building an Application
Building an Application Using Descriptors

The best way to illustrate the use of descriptors is to work through a comprehensive
application example that will demonstrate how descriptors simplify development by
factoring out a large portion of the application code. This example will detail the
descriptor properties, demonstrate how Authors work with descriptors, how Users write
applications using the public API, and finally how Deployers configure the application
for a particular execution environment (in this case, TIB/Rv).

Analyzing the Application

The application goal is to listen for a specific message (“NASDAQ Tanks”). This message
triggers an inference that creates a client list. This list could be used, for example, to issue
limit sell order recommendations for specific stocks.

There are three interactions, in sequence:

1 Event Trigger

2 Reason to Call (RTC) List

3 Customer Recommendations

Event Trigger

The event trigger is a specific TIBCO-format message that arrives “on the wire,”
advertising that the NASDAQ composite index has “tanked.” This will have an
immediate impact on most clients who are heavily invested in technology stocks.

Reason to Call (RTC) List

Following the event trigger, the system presents the Financial Consultant (FC) with a list
of clients to call. The RTC list omits clients with no pending advice. For this demo
application, a simple message (“NASDAQ Tanks”) triggers a response from an inference
(“IF customer highly-weighted in technology sector AND NASDAQ tanks THEN
recommend limit sell”) and displays a list of clients to call.

Customer Recommendations

Selecting a client to call will trigger a subsequent screen that describes in detail the
recommended limit sell orders for each specific customer based on their stock purchase
prices, investing history, and risk preferences. This control logic for this subsequent
screen is outside the scope of this simple demo.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 87

Using the External Descriptor API
Limit Sell Call List

This interaction is pushed to the FC and contains a list of clients with the appropriate
“reason-to-call” (RTC) associated with them (in this case, “limit sell”).

Using the External Descriptor API

This section outlines the descriptive methodology’s approach to application development.
The GUI development procedure requires three stages:

1 Create interaction descriptors for all the features (described in the previous section).

2 Create message descriptors for the interactions.

3 Create type descriptors and put them into the schema descriptor.

88 CHAPTER 5
Building an Application
Using the Interaction Descriptors

The Knowledge Broker stores its configuration information as a chain of linked
descriptors in the model.xml file.

To create the RTC Application, the Author specifies interactions using interaction
descriptors. At this point, the interactions do not have to be tied to a particular
connection. Table 5-1 details the interaction descriptors that are understood by this
version of the Knowledge Broker and the associated RTCApplication class (see
RTCApplication.java at the end of the chapter for details). Service styles are called
from outside, while Consume styles (not used here) require no response:

Table 5-1. Interaction Descriptors

Name Style
Function

Name

Interaction

Verb
Input Message Output Message

RTCRequest service Listen SYNC_RECEIVE - -

 RTCReply - Send SYNC_SEND - -

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 89

Using the External Descriptor API
After entering the interaction descriptor information, the model.xml file contains the
following RTCApplication-specific interaction descriptors:

<?xml version="1.0"?>
<model>

...
<!-- APPLICATION: RTC Message Interaction Descriptors -->

<interactionDescriptor>
<name>RTCRequest</name>
<subject>RTCRequest</subject>
<connectionName>tibcoCxn</connectionName>
<functionName>Listen</functionName>
<interactionVerb>SYNC_RECEIVE</interactionVerb>
<style>service</style>
<applicationService>RTCApplication</applicationService>

</interactionDescriptor>

<interactionDescriptor>
<name>RTCReply</name>
<subject>RTCReply</subject>
<connectionName>tibcoCxn</connectionName>
<functionName>Send</functionName>
<interactionVerb>SYNC_SEND</interactionVerb>

</interactionDescriptor>
...

<interactionDescriptor>
<name>SendTestMessage</name>
<expression/>
<connectionName>testMessageFile</connectionName>
<functionName>Get</functionName>
<interactionVerb>SYNC_RECEIVE</interactionVerb>
<outputMessageName>sendTestMessage</outputMessageName>

</interactionDescriptor>
...
<interactionDescriptor>

<name>SendTestMessageNow</name>
<subject>RTCRequest</subject>
<connectionName>tibcoCxn</connectionName>
<functionName>Send</functionName>
<interactionVerb>SYNC_SEND</interactionVerb>
<inputMessageName>sendTestMessage</inputMessageName>

</interactionDescriptor>
</model>

90 CHAPTER 5
Building an Application
Using the Message Descriptors

In a complex application, message descriptors facilitate complex message handling. In
this simple application, they are not required. A non-functional, demo message descriptor
is presented in Table 5-2 .

After entering this message descriptor information, the following content is added to the
model file:

<?xml version="1.0"?>
<model>

...
<messageDescriptor>

<name>sendTestMessage</name>
<type>RTCRequest</type>

<interactionDescriptorName>SendTestMessageNow
</interactionDescriptorName>

</messageDescriptor>
...

</model>

Using the Type Descriptors

The final GUI task for the Author is to define the types for the message content. These
definitions are contained within an external schema file (.xsd) referenced by a schema
descriptor. One schema file contains the Concept definitions, the other the message type
definitions. The following content is added to the model file:

<?xml version="1.0"?>
<model>

...
<schemaDescriptor>

<name>ConceptSchema</name>
<connectorName>FILE</connectorName>
<url>e:/demos/rtc/container/schemas/RTCConcepts.xsd</url>
<schema/>

</schemaDescriptor>
...
<schemaDescriptor>

<name>mesgSchemaCxn</name>
<connectorName>FILE</connectorName>
<url>E:/demos/rtc/container/schemas/RTCMessageSchemas.xsd</url>

</schemaDescriptor>
...

</model>

Table 5-2. Message Descriptors

Name Type

sendTestMessage RTCRequest

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 91

Creating the Descriptor User’s Control Flow
Customizing the Schema Descriptors

The Author defines the “outward” application interface using the GUI. The focus now
shifts to the internal functionality description through the control of the type and
composition of the messages.

The RTCMessageSchemas.xsd file contains a list of complexType definitions of message
contents, as well as a series of simpleType definitions using the the XML Schema
restriction property to perform simple type mappings.

The Author could stop creating descriptors at this point and hand over to the Descriptor
User, who could now begin coding Java objects to use the descriptors. But there is still
some work to be done.

Creating the Descriptor User’s Control Flow

So far, the application has no control flow - data types have been created but no
specifications for the data routing or transformations have been defined and only a static
data schema exists. The Descriptor User’s responsibility is to add control flow logic to
create a dynamic, responsive application. This requires the use of externalk Java
programming tools.

The User accesses the descriptor API using programmatic Java code. This section outlines
illustrative (but not necessarily complete) code examples.

Every application must implement the ApplicationService interface. In this case, the
demo uses the AbstractApplicationService, a sub-class of ApplicationService.
This class encapsulates methods that provide parameter preparation and message
hanbdling and dispatch.

public class RTCApplication extends AbstractApplicationService {
private static final String ROOT_NAME = "RTCRequest";
private static final String INTERACTION_NAME = "RTCReply";
private static final String PCT_TECH_STOCK_NAME =

"PercentageTechnologyStocks";
private static final String EVENT_NAME = "Event";
private Container m_container = null;
private AdvisorWrapper m_advisor = new AdvisorWrapper("MarketAdvisor");

...

For XML Schema editing, use the TIBCO Extensibility editor (XML Authority), or a similar tool.

See this link for further information about TIBCO Extensibility:
http://www.extensibility.com/

92 CHAPTER 5
Building an Application
}

Demonstrating Message Processing

The code example in this section demonstrates how an application processes an incoming
message. In this case, the Knowledge Broker’s inferencing mechanisms are listening for a
message: “NASDAQ Tanks”. This key piece of “evidence” will trigger an inferred
response from the rules contained in the Knowledge Broker’s knowledge base that will
produce an RTC alert. In a more advanced scenario, this list would comprise Clients with
heavy technology weightings where a “Limit Sell” order makes good financial sense. In
this simple demo, the customers remain unidentified.

Inferring Using the Evidence

The NewOntology.xml file encodes the business intelligence that associates concepts
with messages and desired rules-based responses. Information concerning this file’s
location and parameters are written automatically within the model.xml file using
descriptors:

<?xml version="1.0"?>
<model>

...
<!-- KB: Ontology SubSystem -->
<interactionDescriptor>

<name>getOntologyData</name>
<expression/>
<connectionName>ontologyFile</connectionName>
<functionName>Get</functionName>
<interactionVerb>SYNC_RECEIVE</interactionVerb>

</interactionDescriptor>

<interactionDescriptor>
<name>putOntologyData</name>
<expression/>
<connectionName>ontologyFile</connectionName>
<functionName>Put</functionName>
<interactionVerb>SYNC_RECEIVE</interactionVerb>

</interactionDescriptor>

<connectionDescriptor>
<name>ontologyFile</name>
<connectorName>FILE</connectorName>
<url>e:/demos/rtc/ontology/NewOntology.xml</url>

The private static final String ROOT_NAME = "RTCRequest"; code line is
necessary because TIBCO messages do not have a single root. To ensure XML compatibility, a
single root must be added when TIBCO messages are received by or stripped when TIBCO
messages are sent from the Knowledge Broker.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 93

Creating the Descriptor User’s Control Flow
<schema>ontologySchema</schema>
</connectionDescriptor>

<schemaDescriptor>
<name>ontologySchema</name>
<connectorName>FILE</connectorName>
<url>e:/demos/rtc/container/schemas/ontology.xsd</url>
<schema/>

</schemaDescriptor>

<ontologyDescriptor>
<name>BlackPearlOntology</name>
<BusinessConceptBaseURL>e:/demos/rtc/ontology/NewOntology.xml

</BusinessConceptBaseURL>
<RuleBaseURL>e:/demos/rtc/ontology/BPRuleBase.xml</RuleBaseURL>
<ActionsBaseURL></ActionsBaseURL>
<CalculationsBaseURL></CalculationsBaseURL>
<MappingsBaseURL></MappingsBaseURL>
<RuleBaseURL_Temp>e:/demos/rtc/ontology/BPRuleBase.xml

</RuleBaseURL_Temp>
</ontologyDescriptor>
...

</model>

The final ontologyDescriptor is required for future functionality enhancements.

Communicating With the Knowledge Broker

For the Knowledge Broker’s inference engines to accept and process information, the
messages must be converted into an ordered list of attributes and values, the “evidence”.
This is an ArrayListAttributeList object. This object is passed to and from the
Knowledge Broker using various Cursor objects. The Cursor objects can use utility
classes that provide DOM Parsing and other XML handling and formatting methods.

Analyzing the Application Code

The entire RTCApplication.java code is reproduced here. Explanatory code
comments have been highlighted.

package rtcapp;

import java.io.*;
import java.util.*;

// DOM parser is XERCES
import org.apache.xerces.parsers.*;
import org.w3c.dom.*;
import org.xml.sax.*;

import com.blackpearl.container.*;

94 CHAPTER 5
Building an Application
import com.blackpearl.api.connector.Cursor;
import com.blackpearl.api.connector.DataException;
import com.blackpearl.api.descriptor.DescriptorException;
import com.blackpearl.api.descriptor.InteractionDescriptor;
import com.blackpearl.api.descriptor.Message;
import com.blackpearl.dis2.common.DOMCursor;
import com.blackpearl.api.container.Container;
import com.blackpearl.api.container.ServiceException;

import com.blackpearl.standalone.AdvisorWrapper;
import com.blackpearl.application.utilities.*;

/**
* Reason To Call Application.
*
* This application listens for a request
* which contains the fields Account Number,
* Event and PercentageTechnologyStocks. This application then generates a
* recommendation and broadcasts under the subject "RTCReply".
*/

public class RTCApplication extends AbstractApplicationService {
private static final String ROOT_NAME = "RTCRequest";
private static final String INTERACTION_NAME = "RTCReply";
private static final String PCT_TECH_STOCK_NAME =

"PercentageTechnologyStocks";
private static final String EVENT_NAME = "Event";
private Container m_container = null;
private AdvisorWrapper m_advisor = new AdvisorWrapper("MarketAdvisor");

/**
* Constructs the RTCApplication.
*/

public RTCApplication() {}

/**
* Call back from the container when an incoming message arrives.
* This IS the application.
*
* The processMessage method is from the AbstractApplicationService.
* The underlying service routine is specified in
* com.blackpearl.api.Container.
*
* General Flow:
* 1. Listens for RTCRequests
* 2. Gathers evidence for the Knowledge Broker
* 3. Asks the Knowledge Broker for recommendations
* 4. Processes the recommendations
* 5. Sends a broadcast message out with the recommendation
*/

public void processMessage(MessageHdl incoming) {

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 95

Creating the Descriptor User’s Control Flow
// 1. Listens to incoming requests

// This call back occurs when an incoming message arrives
Cursor data = incoming.input.getCursor();

// 2. Gathers evidence for the Knowledge Broker
// By extracting the data from the incoming message

String event = null;
String pct_tech_stock = null;
try {

while (data.next() != Cursor.END_OF_CURSOR) {
if (EVENT_NAME.equals(data.getName())) {

event = data.getValue().toString();
}
else if (PCT_TECH_STOCK_NAME.equals(data.getName())) {

pct_tech_stock = data.getValue().toString();
}

}
}
catch (DataException ex) {

// log the exception
System.err.println("Error processing incoming message.

Got exception" + ex);
return;

}

// Make sure that we have all the necessary information

if (event == null || pct_tech_stock == null) {
System.err.println("Error processing incoming message.

Message does not contain all required fields. Ignoring message.");
return;

}

// Transform the data into something KnowledgeBroker understands

ArrayListAttributeList attributes = new ArrayListAttributeList();
attributes.add("Event", event);
attributes.add("PercentageTechnologyStocks", pct_tech_stock);
Map evidenceMap = new HashMap();
evidenceMap.put(attributes, "RTCRequest");
com.blackpearl.dis.Cursor evidence = new MapCursor(evidenceMap);

// 3. Asks the KnowledgeBroker for recommendations

com.blackpearl.dis.Cursor result = null;
try {

result = m_advisor.getInferences(evidence);
}
catch (Exception ex) {

// log it

96 CHAPTER 5
Building an Application
System.err.println("Error inferring: " + ex);
return;

}

// 4. Process the recommendations

String recommendation = null;
try {

while (result.next() != Cursor.END_OF_CURSOR) {
System.out.println(result.getLocalName()

+ ": " + result.getObject());
if (result.getLocalName().equals("explanation")) {

recommendation = result.getObject().toString();
}

}
}
catch (Exception ex) {

// log it

System.err.println("While processing results got: " + ex);
return;

}

// 5. Sends a broadcast message out with the recommendation

// Construct a cursor with the advice embedded within it

String xml = "<RTCReply>" + recommendation + "</RTCReply>";
DOMParser parser = new DOMParser();
Cursor outCursor = null;

try {
parser.parse(new InputSource(new StringReader(xml)));

}
catch (Exception ioe) {

System.out.println("FATAL: could not parse message!");
System.out.println(xml);
ioe.printStackTrace();
System.exit(1);

}
try {

outCursor =
new DOMCursor(parser.getDocument(),

m_container.getAdminService()
.getSchemaDescriptor("mesgSchemaCxn").getSchema());

}
catch (DescriptorException de) {

de.getNestedException().printStackTrace();
}
catch (DataException de) {

de.getNestedException().printStackTrace();
}

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 97

Creating the Descriptor User’s Control Flow
// Now use the RTCReply interaction and
// send out the cursor we constructed above.

InteractionDescriptor sendInteractionDescriptor =
m_container.getAdminService()

.getInteractionDescriptor(INTERACTION_NAME);

Message outMsg = new Message(null, outCursor);
try {

sendInteractionDescriptor.execute(outMsg);
}
catch (DescriptorException de) {

de.getNestedException().printStackTrace();
}

// Done
}

/**
* Returns the name of the application.
*/

public String getName() {
return "RTCApplication";

}

/**
* Configures the application. Just keep a reference to the container

around.
*/

public void configure(Container container,
Properties properties) throws ServiceException {

super.configure(container, properties);
m_container = container;

}
}

98 CHAPTER 5
Building an Application
Writing the Deployer Descriptor

Following the packaging and coding, the application is ready for deployment. The
descriptors do not yet contain parameters specific to the execution environment, how the
requests arrive, or where the client, portfolio, and market data resides. The dynamic
application must be “triggered” by external events or internal timers or options. Code
must be created to start and then run the application. To execute the application, the data
sources must be defined during deployment.

Setting Connections and Starting the Application

Several interaction descriptors communicate with external processes and require
Connection descriptors. For this example, assume that all requests come over a TIB/RV
bus and a database supplies the data.

Define the following connection using the Knowledge Broker GUI:

A TIB/RV connection with the name tibcoCxn. TIB/RV requires no connection
properties but supports a relatively large set of connection properties. All these properties
can be initialized with their default values. This connection descriptor is added to the
model file. The Connection descriptor here defines a named tibcoCxn connection on
the localhost at port 7890.

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 99

Writing the Deployer Descriptor
The Connection descriptors are also stored in the model.xml file:

<?xml version="1.0"?>
<model>

...
<!-- APPLICATION: RTC TIB Connection -->

<connectionDescriptor>
<name>tibcoCxn</name>
<url>127.0.0.1</url>
<service>7890</service>
<daemon>null</daemon>
<refreshTimeout>-1</refreshTimeout>
<connectorName>TIBCO</connectorName>
<schema>mesgSchemaCxn</schema>

</connectionDescriptor>

<!-- APPLICATION: Sends out a test message -->
<connectionDescriptor>

<name>testMessageFile</name>
<connectorName>FILE</connectorName>
<url>e:/demos/rtc/rtcapp/testMessage.txt</url>
<schema>mesgSchemaCxn</schema>

</connectionDescriptor>
...

</model>

Next, assign the newly created connection descriptor to the interaction descriptors.
Again, use the Knowledge Broker GUI to update the interaction descriptors.

100 CHAPTER 5
Building an Application

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 101

A - D
Index

A

administration service 16, 70
API. See descriptor API
application

analyzing 86
application components 7
ApplicationService interface 91
building 85
control flow 91
customer recommendations 86
deployer descriptor 98
descriptor API 87
descriptor user’s responsibility 91
interaction descriptors 88
Java code 91
message descriptors 90
message processing 92
Reason to Call List 86
schema descriptors 91
setting connections 98
starting the 98
type descriptors 90
using descriptors 86

application programming 68
application style

publish-subscribe 68
request-response 68

arcs 23
artificial intelligence components 68
author 69

B

Black Pearl Knowledge Broker
contact information xiv

C

CCI. See Common Client Interface
code example 92
Common Client Interface 34
Concepts 21
connection factories 38
Connector 71

native 71
Connector name

File System 71
Oracle 71
TIB/Rendezvous 71
WWW 71

contact information xiv
Container 6, 71

TIB/Rendezvous 7
ContentHandler 57
control flow 91
conventions xiii
Cursor 60

DOMProvider 62
navigation 61
using 61

customizer 70

D

DAGS. See directed acyclic graphs
data management 58
data models 68
deployer descriptor

writing the 98
descriptive process

descriptor author 69
descriptor customizer 70
descriptor user 69

descriptive process, roleplaying the 69
descriptive process, understanding the 68
descriptor

102 INDEX
D - D
interfaces 72
descriptor API 87

deployer descriptor 98
interaction descriptors 88
interaction names. See interaction names
message descriptors 90
message names. See message names
schema descriptors 91
type descriptors 90

descriptor components 8
descriptor groups

activity 72
business logic 72
connectivity 72
data modeling 72

Descriptors 67
descriptors

application programming 68
author 69
building an application with 86
customizer 70
descriptive approach 68
getRequiredProperties() 74
getting method names 75
getting properties of 74
isConfigured() 74
message descriptors, using 90
naming scheme 73
properties 74
setProperty() 74
setting method names 75
setting properties of 74
symbolic links 75
type descriptors, using 90
user 69
visualizing 82

descriptors, in detail 85
directed acyclic graphs 22

arcs 23
direction 23
nodes 23

direction 23
DIS. See Distributed Information System
DISQE

Connection Descriptor 66
Connector Descriptor 65
Interaction Descriptor 66

DISQE. Distributed Information System
Query and Transformation Engine 33
DISQUE

analyzing 64
heterogeneous joins 63
interaction descriptor 62
RequestResponse 62
XQuery 64

Distributed Information System
accessor object 59
architecture 30
callback object 57
connection factories 38
Cursor 60
data management 58
event management 57
Extended Client API 35
federation 33
general architecture 34
heterogeneous object composition 33
interaction architecture 49
interaction management 48
interactions 31
Java Object support 31
JDBC 38
logical query decomposition 33
logical-to-external schema mapping 33
mapped object structure queries 32
mapping functions 32
object structure mapping 32
overview 30
queries 51
request object 51
roles and connections 37
Schema management 40
Schema roles 43
Schema support 31
unified address support 32
user-defined name mappings 32
XML document interactions 56
XML support 31

KNOWLEDGE BROKER PROGRAMMER’S REFERENCE 103

E - N
document conventions xiii
Document Object Model 58
DOM objects 59
DOM. See Document Object Model
DOMProvider 62

E

EIS. See Enterprise Information Systems
Enterprise Information Systems 30
events

architecture 57
ContentHandler 57
InteractionListener 57
management 57

F

federation 33

G

getRequiredProperties() 74

H

heterogeneous joins 51

I

interaction
architecture 49
canceling 55
closing 54
exceptions 56
executing 54
explaining 55
management 48
monitoring progress 55
procedures 54
scenarios 52
setting timeout 55

interaction descriptors 88

interaction object
obtaining 54

interaction response
solicit/response 49

interaction types
notifications 49
synchronous one-way 49
synchronous request/response 49

InteractionListener 57
isConfigured() 74

J

Java code example 92
JavaBeans 59
JDBC 38

K

Knowledge Broker
application view 2
functional components 17
system components 6

Knowledge Broker subsystems
administration service 70
Connector 71
Container 71
object factory 72

Knowledge Broker subsystems, interacting
with the 70

M

mapping functions 32
message descriptors 90
message processing 92
Message-Oriented Middleware 68
MOM. See Message-Oriented Middleware

N

nodes 23

104 INDEX
O - X
O

object factory 72
ontology 19

advantage 25
Concepts 21
databases, relation to 27
directed acyclic graphs 22
Ontology Structure 20
relations 21
rules 21
serializing 28

P

publish-subscribe 68

Q

Query and Transformation Engine. See
DISQUE
Quilt 51

R

Reason to Call List 86
relations 21
request object 51
request-response 68
RTC. See Reason to Call List
rulebase 68
rules 21

S

SAXParser 56
schema

corroborating 47
creating 47
external schema 43
management 40
reading 46
roles 43

scenarios 46
Schema components 45
SchemaConnection interface 44
SchemaConnectionFactory 44
SchemaEventListener 45
SchemaFactory 45
SchemaManager 44
sharing 46
validating 47

schema descriptors 91
setProperty() 74
system components

administration service 16
application components 7
Container 6
descriptor components 8

T

transformations 68
type descriptors 90

U

URI 36
user 69
utility interfaces 11

DataInput 11
DataOutput 11
DocumentInput 11
DocumentOutput 11

X

XCI. See Extended Client API
Xerces 72
XML documents

interactions 56
XML Schema 36

TIBCO Extensibility editor 91
XML Authority 91

XPath 36

	Black Pearl Knowledge Broker Version 1.3.1
	Programmer’s Reference
	Contents
	How This Guide Is Organized
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	List of Tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	List of Figures
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5

	Introduction
	How This Guide Is Organized
	Audience
	Document Conventions
	Special Message Conventions
	Menu Conventions

	Additional Help
	Introduction
	Chapter
	1

	Chapters
	Chapter 1 • Understanding the Knowledge Broker
	Application View of the Knowledge Broker
	Figure 1-1. Overview of the Connector Architecture
	Figure 1-2. Overview of the Connector Architecture
	Figure 1-3. Extended Client Interface

	System Components
	Container
	TIB/Rendezvous Container

	Application Components
	Descriptor Components
	Connector Descriptor
	Table 1-1. Connector Descriptor JavaBean Properties

	Connection Descriptor
	Table 1-2. Connection Descriptor JavaBean Properties

	Interaction Descriptor
	Table 1-3. Types of Interactions
	Table 1-4. Utility Interfaces
	Table 1-5. Interaction Descriptor JavaBean Properties

	Message Descriptor
	Table 1-6. Message Descriptor JavaBean Properties

	Schema Descriptor
	Table 1-7. Schema Descriptor JavaBean Properties

	Mapping Descriptor
	Ontology Descriptor
	Table 1-8. Ontology Descriptor JavaBean Properties

	Inference Engine Descriptor
	Table 1-9. Inference Engine Descriptor JavaBean Properties

	Object Factories
	Reasoning Services
	Rete Inference Engine

	Query and Transformation Service
	Administration Service
	Figure 1-4. Knowledge Broker Functional Components
	Chapter
	2

	Chapter 2 • Understanding the Ontology
	Ontology Structure
	Why an Ontology?
	1 transforming raw data into information
	2 transforming information into knowledge
	3 transforming knowledge in a concise, relevant, and active format
	Concepts
	Relations
	Table 2-1. Relationship Types

	Rules

	Encoding the Ontology Using Directed Acyclic Graphs
	Figure 2-1. A Simple DAG
	equities risky
	| |
	/ \ / \
	/ \ / \
	/ \ / \
	stocks junk bonds derivatives
	Figure 2-2. Simple DAG, Converted to a Tree
	Figure 2-3. DAG Model, topologically sorted

	Examining the Knowledge Broker’s DAGs
	Figure 2-4. Simple Ontology Diagram
	If (High Net Worth Customer) then recommend hot stocks

	Appreciating the Ontology Advantage
	If Customer lives in California &&
	They are 18-30 years of age &&
	They selected a backpack
	Then
	Recommend tents with a priority of 10
	If “Young California Backpacker”
	Then
	Recommend “Tents” with a priority of 10
	Figure 2-5. DAG Ontology

	Finding the Database Relation
	Traversing the Ontology
	Serializing the Ontology
	Chapter
	3

	Chapter 3 • Understanding the DIS
	DIS Architecture
	Overview
	Richer interaction support
	Schema Support
	XML Support
	Java Object Support
	Unified Address Support

	Mapping support
	User-Defined Name Mappings
	Object Structure Mapping
	Mapped Object Structure Queries

	Federation
	Logical-to-External Schema Mapping
	Heterogeneous Composition of Objects
	Logical Query Decomposition

	General Architecture
	Figure 3-1. Overview of the Connector Architecture
	Extended Client API
	Figure 3-2. DIS Architecture
	Table 3-1. Management Functionality
	Figure 3-3. Extended Client Interface

	Roles and Connections
	Connection Factories and JDBC
	java.lang.Object getConnection() throws Exception
	void close() throws Exception
	Figure 3-4. Connection Architecture (Managed Scenario)
	Figure 3-5. Connection Architecture (Non-Managed Scenario)

	Schema Management
	Figure 3-6. Schema Management Architecture
	Figure 3-7. Schema Management Architecture - Asserted Schema
	Schema Components
	Figure 3-8. Schema Management Hierarchy - Asserted Schema
	Schema Roles
	External Schema
	SchemaManager
	SchemaConnectionFactory
	SchemaConnection interface
	SchemaFactory
	Schema Components
	SchemaEventListener
	Schema Scenarios

	Reading an External Schema
	Sharing a Schema Object between Connections
	Creating a New External Schema
	Creating an External Schema from an Existing Schema Object
	Corroborating an External Schema
	Validating a Schema

	Putting it All Together
	Table 3-2. getSchemaConnection Methods

	Interaction Management
	Interaction Architecture
	Table 3-3. Types of Interactions
	Table 3-4. Utility Interfaces

	Request Object
	Request request = new Request();
	// Set standard properties
	request.setConnectorName("ORA");
	request.setConnectionURL(
	"jdbc:oracle:thin:@JUPITER:1521:MYDB");
	request.setSchemaURL("MYSchema");
	request.setUser(user);
	request.setPassword(password);
	// Set Adapter specific properties
	request.setProperty("Timeout", "10000");
	OneWayOperation oneway =
	request.getOneWayOperation(interactionSpec);
	...
	oneway.execute();

	Queries - RequestResponse Interactions
	Interaction Scenarios
	Query Execution - Synchronous Call
	1 Retrieve an InteractionSpec from the InteractionManager. This requires a SchemaConnection and a...
	2 Request an instance of the RequestResponse interaction from the adapter’s InteractionFactory (s...
	3 Bind the parameters using the DataOutput interface on the RequestResponse object.
	4 Call the RequestResponse.execute method. Catch any exceptions.
	5 Retrieve the result from the RequestResponse as a Cursor object.
	String queryString =
	"FOR $a IN document(ADDRESS.xml)//address " +
	"WHERE $a/zip EQ $Zip " +
	"RETURN <TargetMarket>$a/NAME, $a/ZIP</TargetMarket>";
	RequestResponse query = request.getRequestResponse(queryStr);
	query.write("Zip", new String("CA"));
	query.execute();
	printCursor(query.read());

	Query Execution - Asynchronous Call
	ContentHandler getDataSink(String documentName);

	Data Change Interaction Execution
	OneWayOperation oneway =
	request.getOneWayOperation(
	"update (\
	"FOR $a in document(\"ADDRESS.xml\")
	"WHERE $a/NAME = $NAME "
	"RETURN <Update> " +
	"$a/PhoneNumber
	</Update>\")");
	oneway.write("NAME", name2Change); // Bind the parameter $Name
	oneway.write("a/PhoneNumber", "123456789"); // bind new phone number
	oneway.execute();

	Interaction Procedures
	Obtaining an Interaction object
	Executing an Interaction
	Closing an Interaction
	Canceling an Interaction
	Setting an Interaction Timeout
	Explaining an Interaction
	1 Mapping resolution – name resolving required
	2 Validation – validation using the schema
	3 Partitioning – whether the query was partitioned and, if so, which partitions are used
	4 Delegation to the adapter
	5 Adapter-supplied explanation (if applicable), for example, SQL statement

	Monitoring Interaction Progress
	Handling Interaction Exceptions

	Interacting with XML Documents
	Table 3-5. Storing and Retrieving XML Documents
	SAXParser parser = new SAXParser();
	OneWayOperation oneway = request.getOneWayOperation("PUT");
	parser.setContentHandler(oneway.getDataSink(xmlFileName));
	parser.parse(fileName);
	oneway.execute();

	Event Management
	Architecting Events

	Data Management
	Architecting the Data Management
	Introducing the Cursor
	public interface Cursor {
	void close() throws DataException;
	void reset() throws DataException
	// value, name and type methods --------------------
	Object getValue() throws DataException;
	String getName() throws DataException;
	Type getType() throws DataException;
	// Attribute count, name, value and type method---------
	int getAttributeCount() throws DataException;
	String getAttributeName(int index) throws DataException;
	Object getAttributeValue(int index) throws DataException;
	Object getAttributeValue(String attributeName) throws DataException;
	Type getAttributeType(int index) throws DataException;
	Type getAttributeType(String attributeName) throws DataException;
	String getNamespaceURI() throws DataException;
	// navigation-------------------------------
	int next() throws DataException;
	boolean nextSibling() throws DataException;
	boolean parent() throws DataException;
	}
	1 Initially, the next() attempts to navigate to the first child object.
	2 If a next child object does not exist, then next() backtracks and attempts to navigate to the n...
	3 If a next sibling object does not exist, then next() attempts to navigate to the parent’s next ...
	4 If the parent’s next sibling does not exist, then next() attempts to navigate to the next sibli...
	5 This process continues until next() cannot navigate to any more ancestor nodes.

	Using Cursors
	while((res = cursor.next())!= Cursor.END_OF_CURSOR){
	String name = cursor.getName();
	if (name != null)
	System.out.print("<" + name + ">");
	else
	System.out.print("No name");
	Type type = cursor.getType();
	if (type != null && type instanceof SimpleType){
	Type primitiveType = ((SimpleType)type).getPrimitiveType();
	System.out.println("Primitive type: " +
	primitiveType.getName());
	Object value = cursor.getValue();
	if (value != null)
	System.out.print(value.toString() + " ");
	else
	System.out.print("null ");
	}
	}

	Using DOMProvider
	interface DOMProvider {
	public org.w3c.dom.Node toDOM();
	}
	if (cursor instanceof DOMProvider){
	Node node = ((DOMProvider)cursor).toDOM();
	// do something with the Node
	}

	Distributed Information Service Query Engine (DISQE)
	Figure 3-9. DISQE
	Analyzing the DISQE
	1 The DISQE partitions the XQuery input into a list of sub-queries. This is the partitioned query...
	2 The DISQE delegates each query from the partitioned query list to the associated connection's c...
	3 The connectors use the XQuery engine to execute the queries delegated to them (retrieving data ...
	4 For each delegated query, the DISQE receives a Cursor. It converts each of these Cursor objects...
	5 The DISQE generates a new XQuery specification based on the original XQuery and the result of t...
	6 The DISQE uses the XQuery engine to execute the internally generated query
	7 The DISQE passes back to the user the query results as either a Cursor or a series of SAX event...
	Figure 3-10. DISQE XQuery Execution

	Describing the DISQE
	DISQE Connector Descriptor
	Table 3-6. DISQE Connector Descriptor JavaBean Properties

	DISQE Connection Descriptor
	Table 3-7. DISQE Connection Descriptor JavaBean Properties

	DISQE Interaction Descriptor
	Table 3-8. DISQE Interaction Descriptor JavaBean Properties
	Chapter
	4

	Chapter 4 • Descriptors in Detail
	Taking a Descriptive Approach
	Understanding the Descriptive Process

	Role-Playing the Descriptive Process
	Descriptor Author
	Descriptor User
	Descriptor Customizer

	Interacting with the Knowledge Broker Subsystems
	Administration Service
	Container
	Connector
	Table 4-1. Connector Names

	Object Factory

	Organizing the Descriptor Interfaces
	Table 4-2. Descriptor Groups
	Naming Descriptors
	Connector Descriptors
	Connection Descriptors
	Interaction Descriptors
	Message Descriptors
	Schema and Type Descriptors
	Map Descriptors

	Descriptor Properties
	setProperty(String name, Object value)
	String[] getRequiredProperties()
	String[] getSupportedProperties()
	boolean isConfigured()

	Linking Descriptors
	String getXYZName()
	XYZDescriptor getXYZDescriptor();
	void setXYZName(String name);
	void setXYZDescriptor(XYZDescriptor descriptor);

	Detailing the Descriptors
	Connectivity Descriptors
	TIBCO Connector Descriptor
	Name
	URLPrefix
	ManagedConnectionFactory
	SchemaConnectionFactory
	InteractionFactory
	service
	daemon
	TIBCO Connection Descriptor

	url
	refreshTimeout
	connectorName
	schema
	Oracle Connector Descriptor

	Name
	URLPrefix
	ManagedConnectionFactory
	SchemaConnectionFactory
	InteractionFactory
	urlPrefix
	serverName
	portNumber
	userName
	password
	driver
	protocol
	databaseName
	timeout
	Oracle Connection Descriptor

	connectorName
	The connectorName identifies to which connector descriptor this connection refers. In this case, ...
	schemaName

	Visualizing the Descriptors Graphically
	Figure 4-1. Analyzing Descriptors
	Chapter
	5

	Chapter 5 • Building an Application
	Building an Application Using Descriptors
	Analyzing the Application
	1 Event Trigger
	2 Reason to Call (RTC) List
	3 Customer Recommendations
	Event Trigger
	Reason to Call (RTC) List
	Customer Recommendations
	Limit Sell Call List

	Using the External Descriptor API
	1 Create interaction descriptors for all the features (described in the previous section).
	2 Create message descriptors for the interactions.
	3 Create type descriptors and put them into the schema descriptor.
	Using the Interaction Descriptors
	Table 5-1. Interaction Descriptors

	Using the Message Descriptors
	Table 5-2. Message Descriptors

	Using the Type Descriptors
	Customizing the Schema Descriptors

	Creating the Descriptor User’s Control Flow
	Demonstrating Message Processing
	Inferring Using the Evidence
	Communicating With the Knowledge Broker
	Analyzing the Application Code

	Writing the Deployer Descriptor
	Setting Connections and Starting the Application
	Next, assign the newly created connection descriptor to the interaction descriptors. Again, use t...

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	X

